
Delft University of Technology
Software Engineering Research Group

Technical Report Series

FEVER: Extracting Feature-oriented
Changes from Commits

Nicolas Dintzner, Arie van Deursen, Martin Pinzger

Report TUD-SERG-2016-005

SERG

TUD-SERG-2016-005

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in Proceedings of the 13th International Conference on Mining Software
Repository

c© copyright 2016, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.

FEVER: Extracting Feature-oriented Changes from
Commits

Nicolas Dintzner
Software Engineering

Research Group
Delft University of Technology

Delft, Netherlands
N.J.R.Dintzner@tudelft.nl

Arie van Deursen
Software Engineering

Research Group
Delft University of Technology

Delft, Netherlands
Arie.vanDeursen@tudelft.nl

Martin Pinzger
Software Engineering

Research Group
University of Klagenfurt

Klagenfurt, Austria
martin.pinzger@aau.at

ABSTRACT
The study of the evolution of highly configurable systems
requires a thorough understanding of thee core ingredients
of such systems: (1) the underlying variability model; (2)
the assets that together implement the configurable features;
and (3) the mapping from variable features to actual assets.
Unfortunately, to date no systematic way to obtain such
information at a sufficiently fine grained level exists.

To remedy this problem we propose FEVER and its in-
stantiation for the Linux kernel. FEVER extracts detailed
information on changes in variability models (KConfig files),
assets (preprocessor based C code), and mappings (Make-
files). We describe how FEVER works, and apply it to sev-
eral releases of the Linux kernel. Our evaluation on 300 ran-
domly selected commits, from two different releases, shows
our results are accurate in 82.6% of the commits. Fur-
thermore, we illustrate how the populated FEVER graph
database thus obtained can be used in typical Linux engi-
neering tasks.

CCS Concepts
•Software and its engineering → Model-driven soft-
ware engineering; Feature interaction; Software design
engineering;

Keywords
highly variable systems, co-evolution, feature, variability

1. INTRODUCTION
Highly configurable software systems allow end-users to

tailor a system to suit their needs and expected operational
context. This is achieved through the development of con-
figurable components, allowing systematic reuse and mass-
customization. [1]. Examples of such systems can be found
in various domains such as database management [2,3], SOA

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR ’16 May 17–18, 2016, Austin, TX, USA
© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

based systems [4], operating systems [5], and a number of in-
dustrial 1 and open source software projects [6] among which
the Linux kernel may be the most well-known.

In the implementation of such system, configuration op-
tions, or features, play a significant role in a number of inter-
related artefacts of different nature. For systems where vari-
ability is mostly resolved at build-time, features will play a
role in, at least, the following three spaces [7, 8]:

1. the variability space - describing available features and
their allowed combinations;

2. the implementation space, comprised of re-usable as-
sets, among which configurable implementation arte-
facts; and finally

3. the mapping space - relating features to assets and of-
ten supported by a build system like Makefiles;

When such systems evolve, information about feature im-
plementation across those three spaces is actively sought by
engineers [9]. Inconsistent modifications across the three
spaces (variability, mapping, and implementation) may lead
to the incapacity to derive products, code compilation er-
rors, or dead code [10–12]. Consistent co-evolution of arte-
facts is a necessity adding complexity to an already non-
trivial evolutionary process [13], occurring in both indus-
trial [14] and open-source contexts [15,16].

Recent studies [7, 15] described common changes occur-
ring in such systems, giving insight on how each space could
evolve, and revealing the relationship between the various
artefacts. More recently, Passos et al. proposed a dataset
capturing the addition and removal of features [17].

Such feature-related change information is important in
various practical scenarios.

• A release manager is interested in finding out which
commits participated in the creation of a feature, to
build the release notes for instance. In such cases, he
would be interested in commits introducing the fea-
ture, and the following ones, adjusting the behaviour
or declaration of the feature.

• A developer introducing a new feature to a subsystem
will be interested in finding how such feature was sup-
ported by similar subsystems in the past. Then, (s)he
needs to look for changes in those subsystems, involv-
ing that feature.

1http://splc.net/fame.html

SERG Dintzner et al. – FEVER: Extracting Feature-oriented Changes from Commits

TUD-SERG-2016-005 1

• Researchers focusing on feature-oriented evolution of
systems are interested in automatically identifying in-
stances of co-evolution patterns or templates, or ex-
tending the existing pattern catalogue.

Unfortunately, the most detailed change descriptions cur-
rently available [7,15] were obtained using extensive manual
analysis of commits, and the existing datasets do not provide
the necessary links between features and associated assets to
enable such queries.

To remedy this problem, we present FEVER (Feature
EVolution ExtractoR), a tool-supported approach designed
to automatically extract changes in commits affecting arte-
facts in all three spaces. FEVER retrieves the commits from
a versioning system and rebuilds a model of each artefact be-
fore and after their modification. Then it extracts detailed
information on the changes using graph differencing tech-
niques. Finally, relying on naming conventions and heuris-
tics the changes are aggregated based on the affected fea-
ture(s) across all commits in a release. The resulting data
is then stored in a database relating the features and their
evolution in each commit.

While the tool we built to extract changes is centred on the
Linux kernel, the approach itself is applicable to a wide set of
systems [16,18] with an explicit variability model, where the
implementation of variability is performed using annotative
methods (pre-processor statements in our case), and where
the mapping between features and implementation assets
can be recovered from the build system.

With this study, we make the following key contributions:
(1) a model of feature-oriented co-evolving artefacts, (2) an
approach to automatically extract instances of the model
from commits, (3) a dataset of such change descriptions cov-
ering 5 releases of the Linux kernel history (3.11 to 3.15 in
separate databases), (4) an evaluation of the accuracy of
our heuristics showing that we can extract accurately the
information out of 82.6% of the commits, (5) we show how
the FEVER dataset can be used to assist developers and
researchers in performing the aforementioned tasks, and fi-
nally, the tool and datasets used for this study are available
on our website.2

We first provide information on previous work on the evo-
lution of highly variable systems in Section 2. We then
give additional information on how variability can be imple-
mented using the Linux kernel as an example in Section 3.
Then, we present the feature-oriented change model we use
to describe the evolution of such systems in Section 4. We
explain the main steps of the model-based change extraction
process in Section 5. We evaluate our prototype implemen-
tation of FEVER by manually validating a subset of 300
randomly selected commits we extracted from release v3.11
and v3.12 of the Linux kernel and present the results in Sec-
tion 6. Finally in Section 6.3, we discuss the possibilities and
limitations of our approach, and elaborate on its usage in
the context of complex change description and configurable
software maintenance operations in Section 7.

2. RELATED WORK
Variability implementation in highly-configurable systems

has been extensively studied in the past [19]. While many
approaches can be found to analyze features in each indi-

2
http://swerl.tudelft.nl/bin/view/NicolasDintzner/

vidual space, few focus on their detailed evolution or the
consolidation of such changes.

In [20], we introduced FMDiff, an approach to extract
feature model changes, that we reuse for the approach pre-
sented in this paper. In this work, we extend FMDiff con-
cepts to cover all types of artefacts and relate those changes
on a feature-basis.

Several studies present methods to extract variability in-
formation from build systems [21–23]. Such approaches are
designed to study the current state of the system, and re-
quire all files to be present. In our case, we are interested by
the changes as performed by developers, focusing on com-
mits which avoid the need for a costly (and often impossi-
ble) analysis of the entire build system. We built a custom
Makefile parser allowing us to extract information relying
on modified artefacts only.

Variability implementation using annotative methods in
source file were also studied in the past [24], often for error
detection [10, 25, 26]. In this study, we use the approach
presented in [6] to identify code blocks and their condition,
and we then rely on this representation to build a model of
implementation assets.

Only few studies focused on the co-evolution of artefacts
in all three variability spaces: variability model (VM), map-
ping, and implementation. In [7], Neves et al. describe the
core elements involved in feature changes (VM, mapping,
and assets). A collection of 23 co-evolution patterns is pre-
sented by Passos et al. in [15]. Each pattern describes a
combination of changes that occur in the three variability
spaces. These papers aimed at identifying common change
operations, and relied on manual analysis of commits. In
this work, we relied on such change descriptions to design
the FEVER change meta-model, and we focused on how to
extract automatically such changes.

Change consolidation across heterogeneous artefacts has
been a long standing challenge. For instance, Begel et al.
proposed a large database aggregating code level informa-
tion, people, and work items [27]. We take a different ap-
proach, and propose to extract more detailed information
focusing on implementation artefacts only. Recently, Passos
et al. created a database of feature addition and removal [17]
in the Linux kernel. We extend this work by extracting de-
tailed changes on all commits, and provide such descriptions
on all types of artefacts. The FEVER dataset is, to the best
of our knowledge, the first dataset providing a consolidated
view of complex feature changes.

3. BACKGROUND
In this section, we present how the variability is supported

in the Linux kernel, the different artefacts involved in its
realization and their relationships.

3.1 Variability Model
A variability model (VM) formalizes the available con-

figuration options (which we assimilate to “features” in this
work) of a system as well as their allowed configurations [28].
In the context of the Linux kernel, the VM is expressed in the
Kconfig language. An example of a feature as described the
Kconfig language shown in Listing 1. Features have at least
a name (following the“config”keyword on line 3) and a type.
The “type” attribute specifies what kind of values can be as-
sociated with a feature, which may be “boolean” (selected or
not), “tristate” (selected, selected but compiled as a module,

Dintzner et al. – FEVER: Extracting Feature-oriented Changes from Commits SERG

2 TUD-SERG-2016-005

or not selected), or a value (when the type is “int”, “hex”, or
“string”). In our example the SQUASHFS FILE DIRECT
feature is of type boolean (line 2). In the remainder of this
work, we will refer to boolean and tristate features simply
as “boolean features”, while features with type “int”, “hex”,
or “string”, will be referred to as “value-based features”. The
text following the type on line 3 is the “prompt” attribute.
Its presence indicates that the feature is visible to the end
user during the configuration process. Features can also have
default values. In our example the feature is selected by de-
fault (y on line 5). The default value might be conditioned
by an “if” statement.

Kconfig expresses feature dependencies using the “de-
pends” statements (see line 5). If the expression is sat-
isfied, the feature becomes selectable during the configu-
ration process. In this example, the feature SQUASHFS
must be selected. Reverse dependencies are declared using
the “select” statement. If the feature is selected then the
target of the “select” will be selected automatically as well
(ZLIB INFLATE is the target of the “select” statement on
line 6). The selection occurs if the expression in the follow-
ing “if” statement is satisfied by the current feature selection
(e.g., if SQUASHFS ZLIB is already selected).

In the context of this study, we consider additions and
removals of features as well as modifications of existing ones
i.e., modifications of any attributes of a feature.

1 config SQUASHFS_FILE_DIRECT
2 bool
3 prompt "Decompress files in page cache"
4 default y
5 depends on SQUASHFS
6 selects ZLIB_INFLATE if SQUASHFS_ZLIB
7 help
8 Decompress file data in page cache.

Listing 1: A feature declaration in Kconfig

To create a new kernel image, an end-user uses a configurator
tool (“menuconfig” for instance) which reads the variability
model, and present the features to the user in a tree like
structure. At the end of the configuration process, a list of
selected features is passed on to the build system which uses
it to select artefacts and artefact fragments to include in the
image before compiling them.

3.2 Feature-asset Mapping
The mapping between features and assets determines which

assets should be included in a product upon the selection of
specific features. In highly-configurable systems, the assets
could be source code, documentation, or any other type of
resources (e.g., images). In the context of this study, we fo-
cus on implementation artefacts. The addition of the map-
ping between a feature and code in a Makefile, as performed
in the Linux kernel, is presented in Listing 2.

Upon feature selection, the name of the feature used in the
Makefile (symbol prefixed with CONFIG) will be replaced
by its value. As a result, the compilation units (“.o” files)
will be added to different lists “obj-y”, “obj-n”, and “obj-
m” (for modules), based on the value of the macros CON-
FIG SQUASHFS FILE DIRECT. Compilation units added
to the list “obj-y” are compiled into the kernel image while
those in “obj-m” are compiled as external modules, and ob-
jects in “obj-n” are not compiled.

Alternatively, a developer may chose to include directly

“obj-y” list in his Makefile, in which case, the content of the
list will be included in the compilation process as soon as
the Makefile is included in the build process. The inclusion
of a Makefile in the build process may be subject to feature
selection.

1 + obj -$(CONFIG_SQUASHFS_FILE_DIRECT) +=
2 + file_direct.o page_actor.o

Listing 2: Mapping between features and assets as
performed in the Linux kernel

The language used to describe the mapping and implement
the compilation process is a complete programming lan-
guage, and the exact mapping between feature and assets
can be very complex. Makefiles are organized in a hierar-
chy, and constraints from one may affect others, leading to
complex presence condition for artefacts.

3.3 Assets
Many types of assets exists, such as images, code, or

documentation. We consider only configurable implemen-
tation assets (source files). We focus specifically on pre-
processor based variability implementation (using #ifdef
statements), which, despite known limitations [29], is still
widely used today [6]. An example of an addition of a pre-
processor statement is presented in Listing 3 where feature
SQUASHFS FILE DIRECT is used to condition the compi-
lation of two code blocks, one pre-existing (line 2 to 7) and
a new one (lines 9 to 13). As a result, based on the selec-
tion of the feature SQUASHFS FILE DIRECT during the
configuration phase, only one of the two code blocks will be
included in the final product.

1 + #ifndef CONFIG_SQUASHFS_FILE_DIRECT
2 static inline void *squashfs_first_page
3 (struct squashfs_page_actor *actor)
4 {
5 return actor ->page [0];
6 }
7 + #else
8 + static inline void *squashfs_next_page
9 + (struct squashfs_page_actor *actor)

10 + {
11 + return actor ->squashfs_next_page(actor);
12 + }
13 +#endif

Listing 3: Creating an #ifdef block in Linux

Value-based features will be referenced in the implementa-
tion, acting as a place-holder for a value defined during the
configuration process, as shown in Listing 4.

1 //set the value of "DSL"
2 #define DSL CONFIG_DE2104X_DSL

Listing 4: Referencing a value feature

4. DESCRIBING CO-EVOLUTION:
THE FEVER CHANGE META-MODEL

The objective of this work is to obtain a consolidated view
of changes occurring to features and their implementation.
We present in this section the meta-model we use to describe
feature-related changes to individual artefacts, and how we
relate those changes to one-another. We illustrate the us-

SERG Dintzner et al. – FEVER: Extracting Feature-oriented Changes from Commits

TUD-SERG-2016-005 3

age of the model with a example of actual feature changes,
affecting all spaces, extracted from release v3.11. In this
scenario, a developer commits a new driver for an ambient
light sensor, “APDS9300”.

4.1 FEVER co-evolution change meta-model
An overview of the FEVER change meta-model is shown

in Figure 1. This overview highlights the different entities
we use to describe what occurs in a commit, from a feature
perspective.

The commit represents a commit in a version control sys-
tem. Commit entities are related to one another through
the “next” relationship, capturing the sequence of changes
over time. Each commit “touches” a number of artefacts,
and those changes are captured in ArtefactEdit entities.
The commit may affect any of the three spaces, leading to
SourceEdit entities when features are modified at a source
level, MappingEdit entities when the mapping between
feature and assets is affected, or finally FeatureEdit enti-
ties when the variability model changes. While the Arte-
factEdit indicates a change to a file, Source-, Mapping-
and Feature- Edit entities are all representing the change
related to individual features within those files. We omit-
ted the following relationship in the model for readability
purposes: FeatureEdit, MappingEdit, and SourceEdit
entities are linked to ArtefactEdit with a “in” relationship,
pointing to the artefact in which the change took place.

commit

next

0..*

ArtefactEdit
touches

0..*

FeatureEditchanges_vm

0..*

FeatureDesc

MappingEditchanges_build

0..*

SourceEdit

TimeLine

is

0..1

was

0..1

changes_implementation

0..*

feature_core_update

0..*

feature_core_update

0..*

feature_core_update

0..*

feature_influence_update

0..*

Figure 1: FEVER Feature-oriented change model

For a commit in the repository we record the commit id
(sha1) to relate our data with the original repository. We
save the commit message which may contain information
about the rationale of a change. Finally, to keep track of who
touches which feature, we record people-related information
such as commiter and author of each commit.

4.2 Variability model changes
A FeatureEdit entity represents the change of one fea-

ture within the variability model performed in the context of
a commit. We are interested in the affected feature, as well
as the change operation that took place (addition, removal
or modification of an existing feature). The FeatureEdit
entity also points to a more complete description of the fea-
ture, FeatureDesc entities. FeatureDesc presents the fea-
ture as it “was”before the change (if existing) and how it“is”
after the edit operation (if existing). Those entities contain
the details of the feature before and after the change. From
an evolution perspective however, we are more interested in
the change affecting the feature, as this may be linked to

changes in other spaces.
In our example presented in Figure 2 we can see on the

left hand side the commit sequence, where commit “03eff”
“touches” four ArtefactEdits (in gray), and “changes the
vm” by adding a feature (in light pink). The FeatureEdit
entity points, via the “in” relationship, to the Kconfig file
in which the feature was touched. We can also see how
the FeatureEdit entity is connected to a FeatureDesc (in
purple) using the “is” relationship. The feature is added, as
noted on the FeatureEdit entity.

Figure 2: Change model instance for the introduc-
tion of a new driver in the Linux kernel

4.3 Mapping changes
Regarding the evolution of the mapping, we are mainly

interested in the evolution of the mapping between feature
and asset, in order to assign code changes, occurring within
files, to features. The evolution of the mapping space is rep-
resented by MappingEdit entities characterized by: the
feature involved, and the type of artefacts it is mapped to.
We describe the feature-mapping change operation (added,
removed, or modified), referring to the association of a fea-
ture any assets, and the change affecting the target within
that mapping (added or removed). We can thus make the
difference between a situation where a new mapping is intro-
duced (addition of a mapping with an added target) and an
existing mapping being extended (modification of a mapping
with an added target). In the example, the MappingEdit
entity is highlighted in blue. It is connected to the commit
with a “changes build” relationship.

4.4 Source changes
Feature related changes within source code, such as mod-

ifications to conditionally compiled blocks and feature ref-
erences, are captured as SourceEdit entities. Feature in
#ifdef code block conditions and feature references within a
given file are an indication that the behaviour of the feature
mapped is configurable, and its exact behaviour is deter-
mined by other features.

Feature references are references to feature names within
the code, meant to be replaced by the feature’s value at
compile-time. Such references may only be added or re-
moved. In such cases, the SourceEdits entity contains the
name of the affected feature and the change in question.

Dintzner et al. – FEVER: Extracting Feature-oriented Changes from Commits SERG

4 TUD-SERG-2016-005

Conditionally compiled blocks are identified by the condi-
tions under which they will be included in the final product.
A change to such block is represented by a SourceEdit
containing the exact condition of the block, the change to
the block itself (added, removed, modified), and the change
of the implementation within that block: added if the code
is entirely new, removed if the whole block was removed,
modified when the changed block contains arbitrary edits,
or finally preserved if the code itself has not been touched.

In our example, two SourceEdit entities, in yellow in
Figure 2, are connected to the commit indicating that the
commit affected conditionally compiled blocks, and to the
file “in” which those changes occurred.

4.5 TimeLines: Aggregating feature changes
Changes pertaining to the same features are then aggre-

gated into TimeLine entities. For this study, we created
TimeLine entities for entire releases.

We divide the types of changes that may affect a fea-
ture into two broad categories: core changes and influence
change. A feature core change indicates that the behaviour
of the feature itself or its definition is being adjusted. This
comprises changes to the feature definition in the VM, chan-
ges to the mapping between the feature and assets, and
changes affecting assets mapped to that feature. A fea-
ture influence change indicates that the feature is playing
a role in the behaviour of another feature. This is visible
in a SourceEdit, through reference of that feature in con-
ditionally compiled code blocks, as part of a condition, or
referenced for its value.

In Figure 2, two TimeLine entities are depicted in red.
The first one relates to the feature that was introduced. We
can see that the “APDS9300” node is connected to the Fea-
tureEdit, the MappingEdit and an ArtefactEdit with a
“feature core update” relationship. The connection between
the TimeLine for this feature and the ArtefactEdit is de-
duced from the MappingEdit: because the new mapping
assigns this artefact to feature APDS9300, then the intro-
duction of this artefact is a “core” update of this feature.
The APDS9300 TimeLine connects the different changes
occurring in 3 different types of artefacts, all related to the
same operation: the addition of a feature.

Moreover, we can see that a TimeLine for feature
PM SLEEP is present and connected to two SourceEdit
entities. This indicates that, at the creation time, the driver
APDS9300 interacts with the power management“sleep”fea-
ture, and this interaction occurs in two different code blocks.

It is important to note that changes are extracted on an
“per artefact basis”. This means that entities being moved
within the same artefacts (a feature in a Kconfig file, or a
mapping in Makefile) will be seen as modified. However,
if an entity is moved from one artefact to another, this is
captured as two separate operations: a removal and an ad-
dition, and as such, two Edits entities. Those two Edit
entities are linked together by a TimeLine entity, referring
to the modified feature.

5. POPULATING FEVER

5.1 Overview
The FEVER approach starts from a set of commits and

outputs an instance of the FEVER change model covering
the given commit range. Figure 3 presents an overview of

the change extraction process.

Unified diff
Unified diff

Unified diff
Unified diff

Commits

Fine grained change extraction

Variability
Model

Change
Parser

Build
script

Change
Parser

Source
Code

Change
Parser

FeatureEdit MappingEdit SourceEdit

Variability
Model File

Diff.

Build Script
File Diff.

Source
 File Diff.

automated
process

Input data

2

Data Extraction for a commit

Commit info extraction

Commit ArtefactEdit

Relationships creation4

Consolidation over time

applied to every commit in the selection

1

5

Change
model

entities

TimeLine

Legend

3

Figure 3: Overview of the FEVER change extraction
and consolidation process

From the initial set of commits, FEVER first analyses
each commit separately, and then consolidates the extracted
change information. For each commit, steps 1 to 4 are exe-
cuted as follows:

Step 1 is the identification of the touched artefacts and
the dispatch to the appropriate change parser. In the Linux
kernel, artefact types are characterized by naming conven-
tions and file extensions: “Kconfig” for VM files, “Makefile”
or “Kbuild” and “Platform” for build files, and “.c”,“.h”, “.s”,
“.dts”, and“.dtb”for source code. Note that“.dts”and“.dtb”
files also contain C code with pre-processor statements.

Step 2 performs the artefact-specific data extraction pro-
cesses. The next subsections detail the process for each type
of artefact, but all of them follow the same general steps.
First FEVER rebuilds a model of the artefact as it was be-
fore the change, and a second one representing the same
artefact after the change. Then, FEVER uses the EMF
Compare3 infrastructure to identify the differences between
the two versions of the model. EMF Compare identifies
the differences between the two models, and extracts them
in terms of the EMF meta-model. FEVER then translates
those changes into the different Edit entities depending on
the artefact type.

The reconstruction of the models, and the identification
of changes (based on EMF Compare results) are based on
heuristics and assumptions on the structure of the artefacts.

3
http://wiki.eclipse.org/EMF_Compare

SERG Dintzner et al. – FEVER: Extracting Feature-oriented Changes from Commits

TUD-SERG-2016-005 5

We provide an estimation of the accuracy of those heuristics
in Section 6.

Step 3 is the extraction of changes in artefacts for which
we do not extract detailed changes. This includes only
commit-related information from which we create a commit
entity, and “untyped” artefacts (documentation, scripts...),
represented by ArtefactEdit entities.

In Step 4, we create the relationships between Edit enti-
ties, the Commit, and ArtefactEdit.

Step 5 of our approach consists in creating entities and
relationships spreading beyond single commits: “next” re-
lationships among commits, and feature TimeLine enti-
ties with their respective relationships to edit entities. This
is done by running through every commit, and identifying
touched feature(s), creating if necessary a new TimeLine
entity and the appropriate relationships between the Time-
Line and relevant edits.

5.2 Extracting Variability Model Changes
The characteristics of the changed features that we focus

on are their type (boolean or value-based), their visibility,
and their optionality as described in Section 3.

We first reconstruct two instances of the VM depicted in
Figure 4-A per VM file touched, one representing the VM
before the change, the other after the change. If, like in the
case of the Linux kernel, the VM is described in multiple
files, we reconstruct the parts of the model described in the
touched files, i.e., the model we rebuild is always partial.
The extraction process follows the FMDiff approach [20],
including the usage of “dumpconf”. This tool takes as an in-
put a Kconfig file and translates it into XML. “dumpconf” is
designed to work on the complete Kconfig model, where the
different files are linked together with a “source” statement,
similar to #include in C. To invoke “dumpconf” successfully
on isolated files, we remove the “source” statements as a
pre-processing steps. “dumpconf” also affects the attributes
of features, and the details of the change operation are de-
scribed in [30]. We use this XML representation of the Linux
VM to build the model shown in Figure 4-A.

We then use EMF Compare to extract the differences and
compile the information in a FeatureEdit entity. We attach
to this entity the snapshot of the feature as it was before and
after the change in FeatureDesc entities. If the feature
is new, respectively deleted, we do not create a “before”,
respectively “after”, FeatureDesc entity.

5.3 Extracting Build Changes
Similarly to the extraction of VM changes, MappingEdit

entities are created based on the differences of reverse en-
gineered models of a Makefile, before and after the change.
We use the model shown in Figure 4-B.

The model contains a set of features and symbols mapped
to targets. “Symbol” refers to any variable mapped to any
assets which is not a feature. We identify feature names in
Makefiles by their prefix“CONFIG ”. We scan the Makefiles
and extract pairs of symbols by searching for assignment
operators (“+=” and “:=”). We consider that the symbol
on the left hand side is mapped to the symbol on the right
hand side (target).

To determine the type of a targeted asset, we use the
following rules: Compilation unit names finish with either
“.o”,“.dts”, “.dtb”; compilation flags contain specific strings
(“cc-flags”, “-D”, “-L”, “-m”, or “-W”). We identify folder

Build Model

Mapped Feature
name: string

Mapped Symbol
name: string

Target
type : {compilation unit | folder | flag}
name: string

[0...*]
contains

[0...*]
contains

[1...*]
mapped to

Implementation
Model

Referenced Value Feature
name: string

Conditional block
start line: int
end line: int
condition: string

[0...*]
contains

[0...*]
contains

[0...*] contains

Variability
 Model

Feature
name: string
type: {boolean | tristate | int | string | hex}
prompt : string
depends: string

[0...*] contains

Select
target: string
condition: string

Default Value
value: string
condition: string

[0...*] contains

[0...*]
contains

[1...*]
mapped to

(A) model used to extract variability model changes

(B) model used to extract feature mapping changes

(C) model used to extract feature implementation changes

Figure 4: Variability, Mapping and Implementation
models used for change extraction

names by “/”, or single words, not containing any special
characters nor spaces. When features are found as part
of “ifeq” or “ifneq” statements, we consider that they are
mapped to any targets contained within their scope. In
Listing 5, both CONFIG OF and CONFIG SHDMA will
be mapped to the compilation unit “shdma.o”.

We also resolve aliases within Makefiles. An example of an
alias is presented in Listing 5, where feature TREE TEST is
mapped to the alias“tree test.o”referring to two compilation
units “tree main.o” and “tree.o”. This step is performed as
a post-processing step for each build model instance, and is
based on heuristics, also evaluated in Section 6.

1 ifeq ($(CONFIG_OF),y)
2 shdma -$(CONFIG_SHDMA) += shdma.o
3 endif
4 obj -$(CONFIG_TREE_TEST) += tree_test.o
5 tree_test -objs := tree_main.o tree.o

Listing 5: Example of an“ifeq”statement and aliases
used in Makefiles

We then use EMF Compare to extract the differences be-
tween the two model instances, giving us the list of feature
mappings that were added or removed in that commit.

As mentioned in Section 3, the exact mapping between
features and files is the result of a complex Makefile hier-
archy. By focusing on the mapping as described in a single
Makefile, FEVER only captures a part of the presence con-
dition of each file.

5.4 Extracting Implementation Changes
At the implementation level, we consider changes to #ifdef

blocks and changes to feature references in the code, as pre-
sented in Section 3. To extract those changes, we rebuild
a model of each implementation file in its before and after
state following the model presented in Figure 4-C.

Dintzner et al. – FEVER: Extracting Feature-oriented Changes from Commits SERG

6 TUD-SERG-2016-005

To rebuild the models, we rely on CPPSTATS [6] to obtain
starting and ending lines of each #ifdef block as well as their
guarding condition. It should be noted that CPPSTATS
expends conditions of nested blocks within a file, facilitating
the identification of block conditions. In the model, code
blocks and their #else counter-parts are captured as two
distinct entities. “Referenced value features” are obtained
by scanning each modified source file looking for the usage
of the “CONFIG ” string outside of comments and #ifdef
statements.

We then use EMF Compare to compare the two models
and build the SourceEdit entities. We determine the code
changes occurring inside #ifdef blocks to compute the value
of the “code edit” attribute of SourceEdit entities. We
extract from the commit the diff of the file in the “unified
diff”format, and identify which lines of code where modified.
We compare this information with the first and last lines of
each modified code block to determine which code block is
affected by the code changes.

5.5 Change consolidation and TimeLines
The final step consist in the creation of feature TimeLine

entities, and relate them to the appropriate entities. We
create such entities for every feature touched affected by any
change in any Edit entity. We apply the following rules:

• if a feature is touched in the VM, mapping or source
file, the corresponding Edit entity is associated with
a TimeLine;

• if a SourceEdit changes a block condition, the source
edit is connected to one TimeLine entity per feature
present in the condition;

• if an artefact is touched, it is linked to the TimeLine
entity of the feature(s) to which it is mapped;

In order to map file changes to features, we need to know
the mapping between features and files. Note that FEVER
only focuses on mapping changes, leaving us with a gap with
respect to mappings that are not touched. As a result, many
files, whose mapping has not evolved would not be mapped -
wrongly - to any features. To compensate for this, we create
a snapshot of the complete mapping based on the state of the
artefacts on the first commit of the commit set. This is the
only operation we perform requiring the entire code base.
We then run through all commits, starting from the leaves
in a breadth-first manner, creating or updating TimeLine
as necessary, and updating the known mapping between files
and features as we encounters MappingEdits.

Some files in the Linux kernel cannot be mapped to di-
rectly to features. This concerns mostly header files, con-
tained in “include” folders. “Include” folders do not contain
Makefiles, which prevents direct mapping between features
and such artefacts. Moreover, such files are included in the
compilation process on the basis that they are referenced by
implementation files (#include statement), which by defi-
nition bypasses any possible feature-related condition. For
those reasons, we do not attempt to map such files to fea-
tures. They are, however, highly conditional, and often con-
tain many #ifdef statements, which we track.

6. EVALUATING FEVER WITH LINUX
The FEVER change extraction process is based on heuris-

tics, and assumptions about the structure of the artefacts.

Those heuristics affect the model build phase, and the com-
parison process - the mapping between EMF model changes
and higher-level feature oriented changes. It is then im-
portant to evaluate whether the data captured by FEVER
reflects the changes that are performed by developers in the
source control system, leading us to formulate the research
question driving this evaluation:

RQ: To what extent does FEVER data match changes
performed by developers ?

To answer this question, we apply FEVER to two releases
of the Linux kernel, and compare the changes captured by
FEVER and the commits obtained from the Linux SCM
(Git).

6.1 Evaluation Method
The objective is to evaluate the accuracy of the heuristics

and the model comparison process used for artefact change
extraction and the change consolidation process. To do so,
we manually compare the content of the FEVER dataset
with the information that can be obtained from Git, using
the GitK user interface. The evaluation was performed by
the main author of this paper.

For a set of commits, we check that the different Edit
entities and their attributes can be explained by the chan-
ges observed in Git. Conversely, we ensure that feature-
related changes seen in Git have a FEVER representation.
At variability model level, we check whether the features
captured by FEVER as added, removed or modified are in-
deed changed in a similar fashion in the Linux Kconfig files.

Regarding mapping changes, we check that the pairing
of features and files is accurate and that the type of tar-
geted artefact is also correct. Special consideration is given
to the validation of the mapping between features and as-
sets. The mapping between features and files may be the re-
sults of complex Makefile constructs and may be distributed
over several files through inclusion mechanism. FEVER only
considers changes on a file level, and so is unlikely to resolve
such complex constructs. Whenever we are able to manually
assign a file to a feature by looking only at the content of
makefiles - including the Makefile hierarchy, we assume that
FEVER should have the information as well. This includes
cases were files are assigned to “obj-y” lists, and the map-
ping is done in a parent Makefile. FEVER does not capture
those structures, but the mapping exists.

At the code level, we check that the blocks seen as touched
are indeed touched, and we compare the condition of each
block. Then, by inspecting the patch, we can see if the code
changes within the blocks are correct.

Regarding TimeLine entities, we do no check whether
all relevant changes in all commits are indeed gathered into
TimeLine object. We make the assumption that if Time-
Line entities are properly linked in the commits we check,
then the algorithm is correct, and the check on the complete
release is unnecessary. We also keep track of the commits
for which all extracted information is accurate, giving us an
overview of the accuracy on a commit basis.

Using FEVER, we extracted feature changes from release
3.12 and 3.13 of the Linux kernel, and randomly extracted
150 commits from each release. The selection of commits in
each release was performed as follows: we randomly selected

SERG Dintzner et al. – FEVER: Extracting Feature-oriented Changes from Commits

TUD-SERG-2016-005 7

Attribute Population Precision (%) Recall (%)
VM operations
change: added 208 100 100
change: removed 73 100 100
change: modified 140 80 100
Mapping operations
target: folder 17 100 94
target: compilation unit 437 100 98
target: compilation flag 10 67 60
mapping change: added 278 99 97
mapping change: removed 84 100 95
mapping change: modified 98 100 98
target change: added 326 99 97
target change: removed 133 100 97
file-feature mapping 622 81 97
Source operations
block change: added 381 81 97
block change: removed 229 100 99
block change: modified 237 97 99
code change: added 365 99 97
code change: removed 195 99 99
code change: edited 237 96 99
code change: preserved 46 32 83
reference change: added 6 100 83
reference change: removed 7 88 100
TimeLine 743 93 98

Table 1: FEVER change extraction accuracy

50 commits touching at least the variability model, 50 among
the commits touching at least the mapping, and 50 touching
at least source files. Those three sets are non-overlapping.
So the creation of three different sets ensures that our ran-
dom sample covers at least all three spaces. During the
evaluation, we ignored commits associated with merges and
tagged releases.

6.2 Results
The results are compiled in Table 1. The table is divided

into three sections, each presenting the precision and recall
of FEVER when capturing detailed changes in each of the
three spaces. We then present in the last section of the table
the accuracy of the TimeLine aggregation process.

In addition to the information contained in the table, we
kept track of the commits in which changes were accurately
described by the FEVER change model. Among the 300
commits studied for this evaluation, we found that FEVER
extracted all change attributes accurately in 82.6% (248 out
of 300) of the cases.

As shown by the numbers, our implementation of FEVER
extracted the changes occurring in the variability model
space precision and recall of at least 80%. In some cases,
features are defined multiple times within the same file and
those will be seen as modified even if they are not - hence
the precision of only 80% for feature modification. This is a
side effect of using model comparison, where each entity of
the compared models must be uniquely identified.

Regarding the mapping space, the approach is quite suc-
cessful in identifying changes to features mapped to files and
folders, determining whether the mapping is new for that
feature, and if the target is added or removed. However, we
note that detection of features linked to compilation flags
is harder. Such situations are less frequent than mapping
to other types of assets, making small errors having a large
impact on the statistical results. The parsing of complex
Makefiles tends to lead to miss-interpretation of variables,

considering them wrongly as compilation flags.
Regarding implementation changes, our heuristic is good

at determining whether conditionally compiled code blocks
are added or removed, with a precision of 80% or more and a
recall of at least 97%. The combination of CPPSTATS and
model differencing proved to be efficient to identify condi-
tionally compiled code block changes. Certain types of code
changes within the blocks are well identified: blocks with
fully added, removed or modified code are captured with
an accuracy of 90% or more. Similarly to what occurs at a
VM level, FEVER returned a number of false positive chan-
ges with “preserved code”. This occurs when a file contains
multiple code blocks with the exact same condition and the
exact same code. In our random sample, multiple commits
edited the same files containing such structures. Considering
the changes with that characteristic are not frequent, those
false positives reduced drastically the measured precision,
but we still have a high recall.

The results showed that the data collected by FEVER
matches the changes performed by developers in 82.6%
or more of the commits.

6.3 Threats to Validity
Internal validity. To extract and analyze feature-related

changes, FEVER uses model-based differencing techniques.
We first rebuild a model of each artefact, and then perform a
comparison. The construction of the model relies on heuris-
tics, which themselves work based on assumptions on the
structure of the touched artefacts - whether they be code,
models, or mapping. For this reason, information might be
lost in the process. To guarantee that the data extracted
by FEVER do match what can be observed in commits, we
performed a manual evaluation, covering every change at-
tribute we consider. The evaluation showed that a large
majority of the changes are captured accurately, with a pre-
cision and recall of at least 80%. This gives us confidence in
the reliability of the data.

The identification of compilation flags mapped to features
and changes to conditional blocks preserving the code is not
captured as accurately as the other attributes. Those are
the results of false positives occurring when the compared
models contained duplicated entities (two code blocks with
the same condition and same code for instance). Those sit-
uations are not frequent, as shown in our random sample.
But because in our random sample actual changes to com-
pilation flags and changes to blocks preserving the imple-
mentation are rare, such false positives skew the statistical
results. Given the high precision and recall we obtain on all
other attributes, we believe this does not affect the validity
of the data.

Mapping between feature and files established through
Makefile variables such as “obj-y”, which FEVER does not
extract, had little influence on the accuracy of the mapping
change extraction (with at least 98% accuracy for mapping
changes). Such mapping appears to be more stable, and thus
are less present in our data. Nonetheless, from an evolution
point of view, FEVER performed as expected.

External validity. We devised our prototype to extract
changes from a single large scale highly variable system,
namely the Linux kernel. In that sense, our study is tied
to the technologies that are used to implement this system:

Dintzner et al. – FEVER: Extracting Feature-oriented Changes from Commits SERG

8 TUD-SERG-2016-005

the Kconfig language, the Makefile system and the usage of
code macros to support fine-grained variability. However,
there are several other systems using those very same tech-
nologies, such as aXTLs and uClibc, on which our prototype
- and thus our approach - would be directly usable.

For other types of systems, one would have to adapt the
model reconstruction phases depending on the system under
study. If we consider another operation system such as eCos,
one would have to rebuild the same change model from fea-
tures described in the CDL language instead of KConfig. A
similar work would be necessary to consider systems using
the Gradle build system, rather than Makefile. However, the
change model, based on an abstract representation of fea-
ture changes, should be sufficient to describe the evolution
of highly variable systems, regardless of the implementation
technology.

This work focuses on build-time variability, constructed
around the build system and an annotative approach to
fine-grained variability implementation (#ifdef statements).
While we believe that the change model may be useful to de-
scribe runtime variability, the extraction process is not suit-
able to extract feature mapping from the implementation
itself at this time. We cannot extend this work to runtime
variability analysis without further study.

7. THE FEVER DATASET
In this section, we provide an overview of the feature evo-

lution in the Linux kernel during release v3.13 captured by
FEVER. Then, we present three practical scenarios where
FEVER can be of use. Finally, we elaborate on further po-
tential usage of the FEVER dataset.

7.1 Co-evolution in Linux
The feature-oriented co-evolution of artefacts has been

studied in the past, as mentioned in Section 3. Previous
studies describing complex changes relied on manual anal-
ysis of commits and do not provide a quantitative overview
of how frequent co-evolution of artefacts is during feature
evolution. With FEVER, this is possible. In this section,
we rely on the FEVER data extract from release v3.13 of
the Linux kernel.

Let us first consider the coverage of TimeLine entities
in terms of commits. In release v3.13, we captured 13,288
commits. Among those, 11,859 (89.2%) are related to at
least one TimeLine entity. Among the 1,429 commits that
are not connected to a TimeLine, 1,209 relate to merge
operations, tagged releases or other maintenance operations.
The remaining commits affect files which are not source,
build nor variability model related.

We focus on how features evolved in this release, and the
spaces affected by their evolution. The number of Time-
Line entities is the number of features that have seen their
core behaviour or influence modified in the course of the re-
lease. We can then, for each of them, determine in which
spaces this evolution took place.

The dataset contains 4,480 TimeLine entities. Among
those TimeLine entities, 3,437 are connected to commit
entities only through feature “core update” relationships.
The majority (75.6%) of the features evolved due to changes
to their declaration, mapping, or modifications to the files
they are mapped to. Only 587 (13%) evolved only through
“influence updates”: their implementation did not change
but they played a role in the evolution of the implementa-

tion of other features. The remaining 456 TimeLine entities
have both“core -”and“influence update” relationships, indi-
cating that for a minority of features, the evolution induced
changes to both their implementation and their influences
on other features.

We use the FEVER database to identify, for each of them,
in which spaces the changes occurred. The resulting distri-
bution is shown in Figure 5. The figure shows that most
features evolved following a modification to their mapped
source files (81%). Only 5% (243) of TimeLine entities
exhibit changes in all three spaces.

Figure 5: Spaces affected by feature evolution

A Linux release lasts six weeks, four of them are dedicated
to bug fixes [31]. Most the development is then focused on
fine-tuning the implementation of features. Moreover, new
capabilities may also be supported by modifications of ex-
isting features. This would explain why most of the feature
changes we observe are in the implementation. Nonetheless,
for 19% of features, modifications to heterogeneous artefacts
took place.

7.2 FEVER in Practice
The FEVER data is stored in a Neo4j graph database.4

Every entity of the FEVER change meta-model is a node
of the graph, and the relationships are edges. Data types
are represented using node labels, and attributes are stored
as node properties. The queries presented in this subsection
are written in the Cypher query language.5

To illustrate the use of the FEVER dataset, let us con-
sider the situation of a release manager building the release
notes. He is interested in highlighting important features,
and matching those to the commits that participated in their
implementation. The release notes of Linux v3.13 6 mention
the following change “add[s] option to disable kernel com-
pression” with a single commit. Looking at the commit, we
know that a new configuration option named “KERNEL -
UNCOMPRESSED” is introduced. We can check this with
FEVER by querying the commits associated with the Time-
Line of “KERNEL UNCOMPRESSED” as follows:

match
(t:TimeLine)-[]->()<-[]-(c:commit)
where t.name = "KERNEL_UNCOMPRESSED"
return distinct c;

4http://neo4j.com/
5http://neo4j.com/docs/stable/cypher-query-lang.html
6http://kernelnewbies.org/Linux 3.13

SERG Dintzner et al. – FEVER: Extracting Feature-oriented Changes from Commits

TUD-SERG-2016-005 9

This query returns two commits. The first, commit 69f055
mentioned in the release note is associated with a Fea-
tureEdit entity denoting the addition of a feature. The
second, commit 2d3c62 - occurring a few days later, is also
associated with a FeatureEdit entity, but, surprisingly, re-
moves the feature. A check in release v3.14 showed that
the feature was never re-introduced. This means that the
release notes written by the 3.14 release engineer were, in
fact, incorrect. We argue that a dataset such as FEVER
would have prevented this false entry in the release notes.

In another scenario, a developer is about to introduce
a new driver for a touch-screen which should support the
power management “SLEEP” feature. The developer might
want to know how such support was done in other drivers.
He queries the FEVER database for commits where a new
feature (f1) is added (fe.change =“add”), and which inter-
acts with a second feature (f2) whose name is “PM SLEEP’
as follows:

match (f1:TimeLine)-[:FEATURE_CORE_UPDATE]->
(fe:FeatureEdit)<-[]-(c:commit),

(c)-[]->()<-[:FEATURE_INFLUENCE_UPDATE]-(f2:TimeLine)
where f2.name = "PM_SLEEP" and fe.change = "Add"
return f1,f2, distinct c;

In release v3.13 of the Linux kernel, this query returns ten re-
sults, giving the name of the newly introduced features, and
the commits in which those changes occurred. Among the
results, the developer might notice that feature “TOUCH-
SCREEN ZFORCE” is among the results and might con-
sider using this as an example to drive his own development.

A researcher in the domain of evolution of highly variable
software systems might be interested in the typical structure
of feature related changes. For instance, one might be inter-
ested in the introduction of abstract features, in the sense of
Thuem et al. [32]: a feature only exists in the VM. We can
identify the introduction of such features with this query:

match
(t:TimeLine)-[:FEATURE_CORE_UPDATE]->(f:FeatureEdit)
where
not (t)-[:FEATURE_CORE_UPDATE]->(:MappingEdit)
and not (t)-[:FEATURE_CORE_UPDATE]->(:ArtefactEdit)
and not (t)-[:FEATURE_INFLUENCE_UPDATE]->(:SourceEdit)
and f.change="Add"
return t

In release v3.13, this query returns 42 features. Because
TimeLine entities are regrouping changes across spaces and
commits, we know that those 42 features are indeed abstract,
and this is not the result of a developer who first modified
the variability model and in a later commit adjusted the
implementation.

One may be able retrieve similar information using a com-
bination of Git and “grep” commands. We argue that ob-
taining the same information would require expert knowl-
edge of features and their mapped artefacts, as well as a
good knowledge of Git. With FEVER, a single query on the
database is sufficient.

7.3 Further Applications
In a system such as Linux with 13,000 features, it might be

difficult to pin-point which configurations should be used to
test a new release, as testing all possible configurations is not
feasible. The view of feature changes provided by FEVER
provides additional information about commits, namely in
terms of touched features. This information can be of use

when deciding which configurations should be tested for de-
fect following a code delivery.

The FEVER database could be combined with other ex-
isting data sources. Tian et al. devised a methodology to
identify bug fixing commits in the Linux kernel [33]. Com-
bined with the FEVER data, it is possible to identify the
characteristics of changes leading to bug fixes, or find how
features evolve during bug fix operations. This would in
turn facilitate the work of Abal et al. to study the nature,
the introduction and fixes to variability related bug [12].

The data provided by German et al. [31] can be used to
track commits over time and across repositories. Combining
this information with the FEVER database would allow us
to track feature development across Git repositories, and
observe how the Linux community collaboratively handles
the development of inter-related features.

8. CONCLUSIONS
In this paper, we presented FEVER, an approach to au-

tomatically extract changes in commits affecting the imple-
mentation of features in highly variable systems. FEVER
retrieves commits from versioning systems, and using model-
based differencing, extracts detailed information on the chan-
ges, to finally combine them into feature-oriented changes.
We applied this approach to the Linux kernel, and used the
constructed dataset to evaluate its accuracy in terms of com-
plex change representation. We showed that we were able to
accurately extract and integrate changes from various arte-
facts in 82.6% of the studied commits.

Through this work, we make the following contributions.
We first presented a model of feature-oriented changes, fo-
cusing on the co-evolution of feature representation in het-
erogeneous artefacts. We showed how we used model based
differencing techniques to recover instances of the model
from a SCM system in an automated fashion. We showed
that the heuristics we used to obtain the change informa-
tion yielded accurate results by applying the approach to
the Linux kernel and manually validating the collected data.
The collected data allowed us to show that co-evolution of
artefacts during feature evolution does occur, but, over a
single release, most features only evolve through their im-
plementation. We presented practical scenarios in which
FEVER can be useful for both developers and researchers.
Finally, our prototype implementation and collected datasets
are available for download.

The next step of our research is to establish a mapping
between our change model and the co-evolution patterns as
defined by Passos et al. [15] and the safe evolution templates
proposed by Neves et al. [7]. We believe this might lead us
to an automated identification of instances of known types
of changes, and further identification of frequent complex
changes in large scale systems. Furthermore, we will ex-
tended FEVER to more types of artefacts in order to apply
this approach to a larger set of systems.

Acknowledgements
The authors thank Sven Apel for his feedback on the early
versions of this work. This publication was supported by
the Dutch national program COMMIT and carried out as
part of the Allegio project under the responsibility of the
Embedded Systems Innovation group of TNO.

Dintzner et al. – FEVER: Extracting Feature-oriented Changes from Commits SERG

10 TUD-SERG-2016-005

9. REFERENCES
[1] J. van Gurp, J. Bosch, and M. Svahnberg, “On the

notion of variability in software product lines,” in
Proceedings of the Working IEEE/IFIP Conference on
Software Architecture, WICSA ’01, pp. 45–54, IEEE
Comput. Soc, 2001.

[2] M. Rosenmüller, N. Siegmund, H. Schirmeier,
J. Sincero, S. Apel, T. Leich, O. Spinczyk, and
G. Saake, “FAME-DBMS: tailor-made data
management solutions for embedded systems,” in
Proceedings of the 2008 EDBT workshop on Software
engineering for tailor-made data management,
SETMDM ’08, ACM Press, 2008.

[3] D. Batory, J. Barnett, J. Garza, K. Smith,
K. Tsukuda, B. Twichell, and T. Wise, “GENESIS: an
extensible database management system,” IEEE
Transactions on Software Engineering, vol. 14,
pp. 1711–1730, Nov. 1988.

[4] I. Kumara, J. Han, A. Colman, T. Nguyen, and
M. Kapuruge, “Sharing with a Difference: Realizing
Service-Based SaaS Applications with Runtime
Sharing and Variation in Dynamic Software Product
Lines,” in Proceedings of the IEEE International
Conference on Service Computing, SCC ’13,
pp. 567–574, IEEE, June 2013.

[5] T. Berger, S. She, R. Lotufo, A. W ↪asowski, and
K. Czarnecki, “Variability modeling in the real: a
perspective from the operating systems domain,” in
Proceedings of the international conference on
Automated software engineering, ASE ’10, p. 73, ACM
Press, 2010.

[6] J. Liebig, S. Apel, C. Lengauer, C. Kästner, and
M. Schulze, “An analysis of the variability in forty
preprocessor-based software product lines,” in
Proceedings of the 32nd International Conference on
Software Engineering, vol. 1 of ICSE ’10, p. 105, ACM
Press, 2010.

[7] L. Neves, P. Borba, V. Alves, L. Turnes, L. Teixeira,
D. Sena, and U. Kulesza, “Safe Evolution Templates
for Software Product Lines,” Journal of Systems and
Software, 2015.

[8] C. Dietrich, R. Tartler, W. Schröder-Preikshat, and
D. Lohmann, “Understanding Linux feature
distribution,” in Proceedings of the 2012 workshop on
Modularity in Systems Software, MISS’12, pp. 15–20,
ACM, 2012.

[9] W. Heider, M. Vierhauser, D. Lettner, and
P. Grunbacher, “A Case Study on the Evolution of a
Component-based Product Line,” in Proceedings of
Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software
Architecture, WICSA/ESCA’12, pp. 1 –10, 2012.

[10] R. Tartler, D. Lohmann, J. Sincero, and
W. Schröder-Preikschat, “Feature consistency in
compile-time-configurable system software: facing the
linux 10,000 feature problem,” in Proceedings of the
6th Conference on Computer systems, EuroSys ’11,
pp. 47–60, ACM, 2011.

[11] S. Nadi and R. Holt, “Mining Kbuild to Detect
Variability Anomalies in Linux,” in Proceedings of the
16th European Conference on Software Maintenance
and Reengineering, CSMR ’12, pp. 107–116, 2012.

[12] I. Abal, C. Brabrand, and A. Wasowski, “42
Variability Bugs in the Linux Kernel: A Qualitative
Analysis,” in Proceedings of the 29th ACM/IEEE
International Conference on Automated Software
Engineering, ASE ’14, (New York, NY, USA),
pp. 421–432, ACM, 2014.

[13] T. Mens, M. Wermelinger, S. Ducasse, S. Demeyer,
R. Hirschfeld, and M. Jazayeri, “Challenges in
Software Evolution,” in International Workshop on
Principles of Software Evolution, pp. 13–22, IEEE,
2005.

[14] R. Hellebrand, A. Silva, M. Becker, B. Zhang,
K. Sierszecki, and J. Savolainen, “Coevolution of
Variability Models and Code: An Industrial Case
Study,” in Proceedings of the 18th International
Software Product Line Conference, SPLC ’14, (New
York, NY, USA), pp. 274–283, ACM, 2014.

[15] L. Passos, L. Teixeira, N. Dintzner, S. Apel,
A. Wasowski, K. Czarnecki, P. Borba, and J. Guo,
“Coevolution of variability models and related
software artifacts,” Empirical Software Engineering,
pp. 1–50, May 2015.

[16] C. Hunsen, B. Zhang, J. Siegmund, C. Kästner,
O. Leßenich, M. Becker, and S. Apel,
“Preprocessor-based variability in open-source and
industrial software systems: An empirical study,”
Empirical Software Engineering, Apr. 2015.

[17] L. Passos and K. Czarnecki, “A Dataset of Feature
Additions and Feature Removals from the Linux
Kernel,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, MSR
2014, (New York, NY, USA), pp. 376–379, ACM, 2014.

[18] T. Berger, R. Rublack, D. Nair, J. M. Atlee,
M. Becker, K. Czarnecki, and A. W ↪asowski, “A survey
of variability modeling in industrial practice,” in
Proceedings of the Seventh International Workshop on
Variability Modelling of Software-intensive Systems,
VaMoS ’13, p. 1, ACM Press, 2013.

[19] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and
G. Saake, “A Classification and Survey of Analysis
Strategies for Software Product Lines,” ACM
Computing Surveys, vol. 47, pp. 1–45, June 2014.

[20] N. Dintzner, A. van Deursen, and M. Pinzger,
“Analysing the Linux kernel feature model changes
using FMDiff,” Software & Systems Modeling, May
2015.

[21] C. Dietrich, R. Tartler, W. Schröder-Preikschat, and
D. Lohmann, “A robust approach for variability
extraction from the Linux build system,” in
Proceedings of the 16th International Conference on
Software Product Line, SPLC ’12, pp. 21–30, ACM,
2012.

[22] S. Zhou, J. Al-Kofahi, T. N. Nguyen, C. Kaestner, and
S. Nadi, “Extracting Configuration Knowledge from
Build Files with Symbolic Analysis,” in Proceedings of
the 3rd International Workshop on Release
Engineering (Releng), ACM Press, May 2015.

[23] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki,
“Mining configuration constraints: static analyses and
empirical results,” in Proceedings of the 36th
International Conference on Software Engineering,
ICSE ’14, pp. 140–151, ACM Press, 2014.

SERG Dintzner et al. – FEVER: Extracting Feature-oriented Changes from Commits

TUD-SERG-2016-005 11

[24] J. Liebig, A. von Rhein, C. Kästner, S. Apel, J. Dörre,
and C. Lengauer, “Scalable analysis of variable
software,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE
’13, p. 81, ACM Press, 2013.

[25] A. Kenner, C. Kästner, S. Haase, and T. Leich,
“TypeChef: toward type checking #ifdef variability in
C,” in Proceedings of the 2nd International Workshop
on Feature-Oriented Software Development, FOSD ’10,
pp. 25–32, ACM Press, 2010.

[26] R. Tartler, J. Sincero, W. Schröder-Preikschat, and
D. Lohmann, “Dead or alive: Finding zombie features
in the Linux kernel,” in Proceedings of the First
International Workshop on Feature-Oriented Software
Development, FOSD ’09, pp. 81–86, 2009.

[27] A. Begel, K. Y. Phang, and T. Zimmermann,
“Codebook: discovering and exploiting relationships in
software repositories,” in Proceedings of the 32nd
ACM/IEEE International Conference on Software
Engineering, vol. 1 of ICSE ’10, p. 125, ACM Press,
2010.

[28] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson, “Feature-Oriented Domain
Analysis (FODA) Feasibility Study,” tech. rep.,
Software Engineering Institute, Carnegie Mellon
University, 1990.

[29] H. Spencer and G. Collyer, #ifdef Considered
Harmful, or Portability Experience With C News.
1992.

[30] N. Dintzner, A. Van Deursen, and M. Pinzger,
“Extracting feature model changes from the Linux
kernel using FMDiff,” in Proceedings of the Eighth
International Workshop on Variability Modelling of
Software-Intensive Systems, VaMoS ’14, ACM Press,
2013.

[31] D. M. German, B. Adams, and A. E. Hassan,
“Continuously mining distributed version control
systems: an empirical study of how Linux uses Git,”
Empirical Software Engineering, Mar. 2015.

[32] T. Thuem, D. Batory, and C. Kaestner, “Reasoning
about edits to feature models,” in Proc. of the 31st
International Conference on Software Engineering,
ICSE ’09, pp. 254–264, IEEE Computer Society, 2009.

[33] Y. Tian, J. Lawall, and D. Lo, “Identifying Linux Bug
Fixing Patches,” in Proceedings of the 34th
International Conference on Software Engineering,
ICSE ’12, pp. 386–396, IEEE Press, 2012.

Dintzner et al. – FEVER: Extracting Feature-oriented Changes from Commits SERG

12 TUD-SERG-2016-005

TUD-SERG-2016-005
ISSN 1872-5392 SERG

