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Abstract—Regression testing can be done by re-executing a test
suite on different software versions and comparing the outcome.
For functional testing, this is straightforward, as the outcome of
such tests is either pass (correct behaviour) or fail (incorrect
behaviour). For non-functional testing, such as performance
testing, this is more challenging as correct and incorrect are
not clearly defined concepts for these types of testing.

In this paper, we present an approach for detecting per-
formance regressions using a spectrum-based technique. Our
method is supplemental to existing profilers and its goal is to
analyze the effect of source code changes on the performance
of a system. The open source implementation of our approach,
SPECTRAPERF, is available for download.

We evaluate our approach in a field user study on Tribler, an
open source peer-to-peer client. In this evaluation, we show that
our approach can guide the performance optimization process,
as it helps developers to find performance bottlenecks on the
one hand, and on the other allows them to validate the effect of
performance optimizations.

I. INTRODUCTION

Regression testing is performed on a modified program
to instill confidence that changes are correct and have not
adversely affected unchanged portions of the program [1].
It can be done by re-executing a test suite on different
software versions and comparing the test suite outcome. For
functional testing, this is straightforward, as the functionality
of a program is either correct or incorrect. Hence, the outcome
of such tests is either pass or fail. For non-functional testing,
this is more challenging, as correct and incorrect are not
clearly defined concepts for these types of testing [2].

An example of non-functional testing is performance test-
ing. Two possible reasons for performance testing are:

1) To ensure the software behaves within the limits specified
in a service-level agreement (SLA)

2) To find bottlenecks or validate performance optimizations
SLA limits are often specified as hard thresholds for execu-
tion/response time, i.e., the maximum number of milliseconds
a certain task may take. The main reason for this is that
execution time influences the user-perceived performance the
most [3]. For performance optimizations, such a limit is
not precisely defined, but follows from comparison with the
previous software version instead, as the goal is to make a
task perform as fast or efficient as possible. Hence, we are
interested in finding out whether a specific version of an
application runs faster or more efficiently than its predecessor.

As a result, including performance tests in the regression
testing process may provide opportunities for performance

optimization. In fact, in this paper we will show that the
outcome of these tests can guide the optimization process.

Performance optimization can be done on various metrics.
Execution time, which is the most well-known, can be an-
alyzed using traditional profilers. Other examples of metrics
which can be optimized are the amount of I/O, memory usage
and CPU usage. These metrics are difficult to analyze for
software written in higher-level languages, such as Python, due
to the lack of tools. Hence, the understanding of how software
written in such languages behaves regarding these metrics is
often low [4]. In addition, understanding the performance of
a system in general is difficult because it is affected by every
aspect of the design, code and execution environment [5].

In this paper, we propose a method which helps performance
experts understand how the performance, including the metrics
mentioned above, changes over the different versions of their
software. Our method is supplemental to existing profilers and
its goal is to analyze the effect of source code changes on the
performance of a system. We achieve this by monitoring the
execution of a specific test by two versions of an applica-
tion and comparing the results using an approach based on
spectrum-based analysis [6]. The result of our approach is a
report which helps a performance expert to:

1) Understand the impact on performance of the changes
made to the software on a function-level granularity

2) Identify potential performance optimization opportunities
by finding regressions or validate fixes

We evaluate our approach in a field user study on a decen-
tralized peer-to-peer (P2P) BitTorrent client, Tribler [7]. In the
first part of our study, we analyze the performance history of
a component in Tribler by analyzing its unit test suite. In the
second part, we analyze the effect of nondeterminism on our
approach, by analyzing a 10 minute run of Tribler in the wild.

The outline of this paper is as follows. In the next section,
we first give two motivational examples for our approach. In
Section III, we present our problem statement. In Section IV,
we explain spectrum-based fault localization, a technique
which forms the basis for our approach. In Section V, we
present our approach for spectrum-based performance analy-
sis. We present the implementation of our approach, called
SPECTRAPERF, in Section VI. In Section VII and VIII, we
present the setup and results of our user study. We discuss
these results and the limitations of our approach in Section IX.
In Section X, we discuss related work. We conclude our work
in Section XI.
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II. MOTIVATIONAL EXAMPLES

In this section, we give two real-world motivational exam-
ples for the approach presented in this paper.

Monitoring I/O: In a database system, some queries require
the creation of a temporary table1. The creation of such a
file is often done silently by the database system itself, but is
intensive in terms of I/O usage. Finding out which function
causes the temporary table creation can help reduce the I/O
footprint of an application. Because I/O takes time, we can
detect this behaviour using a traditional profiler, which is
based on execution time. However, there is no information
available about whether the function resulted in the creation of
a temporary table, or that the high execution time was caused
by something else. This makes the issue hard to diagnose and
optimize. In addition, if a developer has found the cause of
the temporary table generation, a fix is difficult to validate due
to the same reasons. Using an approach which can automate
this process, we can see if a function has started generating
temporary tables since the previous version. Then, after fixing
it, we can validate if our optimization had the desired effect.

Memory Usage: In many applications, custom caching
mechanisms are used. Understanding the impact of these
mechanisms on memory and disk I/O is often difficult. By
being able to compare versions of software with implemen-
tations of different caching mechanisms, we can improve our
understanding of their behaviour better. Through this better
understanding, we can select, evaluate and optimize the most
suitable caching mechanism for an application.

III. PROBLEM STATEMENT

By including performance testing in the regression testing
process, developers can get feedback about the way their
changes to the code impact the performance of the application.
This feedback can be used to 1) be warned of undesired nega-
tive effects or 2) validate the positive effect of a performance
bug fix. To give this feedback, we must do the following:

1) Define which metrics we want to analyze and combine
this set of metrics into a performance profile, which
describes the performance behaviour of a revision

2) Generate such a performance profile for every source
code revision

3) Compare the most recent profile with the profile(s) of the
preceding revision(s)

4) Analyze which source code change(s) caused the
change(s) in performance

In this paper, we focus on the following research question:
RQ. How can we guide the performance optimization process
by doing performance regression tests?

To answer this research question, we divide it into the
subquestions discussed in the remainder of this section.
RQ 1. How can we monitor performance data and generate
a comparable profile out of this data?

Depending on which metric we want to analyze, we must
find a suitable monitor (or profiler) to monitor performance
data. Ideally, we want to be able to monitor without needing

1For example, for SQLite: http://www.sqlite.org/tempfiles.html

to change the source code of the application. An additional
challenge is that an application may use libraries written in
different programming languages, making it more difficult to
get fine-grained information about, for example, I/O.

A challenge is formed by the fact that monitoring the same
test twice may result in slightly different performance profiles,
due to variations in, for example, data contents and current
memory usage [8]. As such, we must devise a method for
comparing these profiles:
RQ 2. How can we compare the generated performance
profiles?

Finally, we must be able to analyze the differences between
profiles and report on the functions most likely to cause the
change in performance:
RQ 3. How can we analyze and report on the differences
between profiles?

In this paper, we investigate an approach based on spectrum-
based fault localization (see Section V). In this study, we focus
on detecting and analyzing performance regression caused by
write I/O. We expect that our approach can easily be adapted
to work for other performance metrics, which we will verify
in future work.

IV. SPECTRUM-BASED FAULT LOCALIZATION (SFL)
Spectrum-based fault localization (SFL) is a technique that

automatically infers a diagnosis from symptoms [9]. The di-
agnosis is a ranking of faulty components (block, source code
line, etc.) in a system, with the most likely faulty one ranked
on top. To make this ranking, observations are made during
test execution. These observations express the involvement of
components during that specific test case in block-hit spectra
(hence the name of the technique). These spectra contain a
binary value for each component, which represents whether it
was executed during that test case. Together with the outcome
of a test case (pass/fail), these observations form so-called
symptoms. The outcome of all test cases (0 = pass, 1 = fail)
is represented by the output vector.

All observations combined with the output vector form the
activity matrix, which gives an overview of how component
involvement is spread over the execution of a test suite. For
every row in the activity matrix, the similarity coefficient of
that row and the output vector is calculated. The idea behind
this is that the row with the highest similarity coefficient
indicates the component most likely to be faulty, as this
component was executed during most of the failed test cases.

As the similarity coefficient, any similarity coefficient can
be used, but Ochiai was proven to give the best results [10],
hence we will use it throughout this study. This technique
mimics how a human would diagnose an error by looking
which parts of the system were active during the failed tests.
The Ochiai similarity coefficient (SC) for two binary vectors
v1 and v2 is defined as:

SC =

√
a

a + b
∗ a

a + c
(1)

with a the number of items in both vectors, b the number
of items in v1 that are not in v2 and c the number of items
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TABLE I
ILLUSTRATION OF SFL [9]

Component Character counter t1 t2 t3 t4 t5 t6 SC

def count(string) [Activity Matrix]
C0 let = dig = other = 0 1 1 1 1 1 1 0.82
C1 string.each char { |c| 1 1 1 1 1 1 0.82
C2 if c===/[A-Z]/ 1 1 1 1 0 1 0.89
C3 let += 2 1 1 1 1 0 0 1.00
C4 elsif c===/[a-z]/ 1 1 1 1 0 1 0.89
C5 let += 1 1 1 0 0 0 0 0.71
C6 elsif c===/[0-9]/ 1 1 1 1 0 1 0.89
C7 dig += 1 0 1 0 1 0 0 0.71
C8 elsif not c===/[a-zA-Z0-9]/ 1 0 1 0 0 1 0.58
C9 other += 1 } 1 0 1 0 0 1 0.58
C10 return let, dig, other 1 1 1 1 1 1 0.82

end

Output vector (verdicts) 1 1 1 1 0 0

that are in v2 but not in v1. Table I illustrates the use of SFL
for a function which counts the characters in a string, which
is tested by test cases t1 to t6. The SC column shows the
similarity coefficient, calculated against the output vector, for
each line of code. In this example, line C3 is the line most
likely to be faulty as it has the highest SC. In this case, it
is clear to see that this is correct as let should be increased
by 1 instead of 2. In the remainder of this paper, we present
our approach for using spectrum-based analysis for detecting
performance regressions.

V. APPROACH

The goal of our approach is to analyze the effect of source
code changes on the performance of a system. Ideally, we
would like to be able to generate a report explaining per
function how much a performance metric changed, compared
to the previous source code revision. In this section, we explain
our approach for generating such a report. The idea of our
approach is that we summarize the behaviour of an application
during the execution of a certain test execution in a profile.
After an update, we compare the behaviour of our application
during the execution of the same test using that profile.

A. Profile Generation
To be able to report on a function-level granularity, we

must also monitor data on this granularity. Therefore, we first
automatically instrument (see Section VI) all functions in our
application that perform I/O writes. The instrumentation code
writes an entry to the log for every write action, containing
the number of bytes written, the name of the function and the
location of the file being written to.

Second, we let the instrumented code execute a test, which
generates a log of all write actions made during that execution.
This test can be any existing, repeatable test (suite), for
example, a unit test or integration test suite. The write actions
made to the log are filtered out from this process.

To lessen the effect of variation within the program execu-
tion [8], for example, due to data content and current memory
usage, we execute the test several times for each revision
and combine the logged data into a performance profile. The
number of times the test must be executed to get an accurate
profile is defined by a tradeoff between accuracy and test
execution time. Ideally, we would like to run the test many

TABLE II
ILLUSTRATION OF THE PROFILE GENERATION IDEA

Revision: 1 Avg. # bytes written per call Profile

Function t0 t1 t2 t3 t4

flushToDatabase() 900 1000 1200 1100 1500 [900-1500]
generateReport() 1200 1500 1359 1604 1300 [1200-1604]

TABLE III
ILLUSTRATION OF PROFILE COMPARISON

Revision: 2 Average # bytes written Matrix SC

Function t0 t1 t2 (t0) (t1) (t2)

flushToDatabase() 1000 1200 1100 1 1 1 1
generateReport() 2200 2000 1600 0 0 1 0.58
writeCache() 10000 12000 8000 0 0 0 0

Output vector 1 1 1

times to get a more precise profile, but this may be impractical,
depending on the execution time. A profile is generated by:
• For every function:

– Calculate the average number of bytes a function writes
per call during a test execution (hence: divide the total
number of bytes written by that function during the test
execution by the total number of calls to that function
during the test execution)

– For every test execution, this will result in a number.
Define the highest and lowest values for this number
as the accepted range for that revision

Table II demonstrates this idea. The profile can be read as:
‘During revision 1, flushToDatabase() wrote an average
of 900 to 1500 bytes per call and generateReport()
wrote an average of 1200 to 1604 bytes per call.’
B. Profile Analysis

In order to assess the changes in performance of a revision,
we compare its profile with the profile of the previous revision.
While this can be done manually, this is a tedious process and
prone to mistakes. As explained in Section IV, SFL is a tech-
nique which closely resembles the human diagnosis process.
Therefore, we propose to automate the comparison using a
spectrum-based technique. Another advantage of automating
this comparison, is that we can use the technique in automated
testing environments, such as continuous integration environ-
ments. To the best of our knowledge, we are the first to apply
spectrum-based analysis to performance.

For every test execution ti, we record the I/O write data
as described in Section V-A. After this, we verify for every
function whether the recorded average number of bytes written
falls in (1) or outside (0) the accepted range of the profile
of the previous revision. As a result, we get a binary vector
in which every row represents a function. If we place those
vectors next to each other, we get a matrix looking similar to
the activity matrix described in Section V-A. Table III shows
sample data and the resulting matrix for three test executions
ti, after comparing them with the profile of Table II. We use
three executions here for brevity, but this may be any number.

The analysis step now works as follows. When performance
did not change after the source code update, all monitored
values for all functions should fall into the accepted ranges of
the profile of the previous revision. For three test executions,
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this is represented by the row [1 1 1] for every function.
Any deviations from this mean that the average number of
bytes written for that function was higher or lower than the
accepted range. By calculating the SC for each row and the
‘ideal’ vector [1 1 1], we can see whether the average number
of bytes written for that function has changed (SC close to
0) or that it is similar to the previous profile (SC close to
1). Using the SC, we can make a ranking of the functions
most likely to have been affected by the update. When all
SC’s are close or equal to 1, the average number of bytes
written did not change for any function after the update. 2 The
functions with SC closer to 0 are likely to have been affected
by the update. In Table III, from the SC column we can
conclude that the performance of the generateReport()
and writeCache() functions were likely to have been
affected by the changes made for revision 2.

While the SC allows us to find which functions were
affected by the update, it does not tell us how they were
affected. For example, we cannot see if writeCache()
started doing I/O in this version, or that the amount of I/O
increased or decreased. Therefore, we append the report with
the average number of bytes the monitored values were outside
the accepted range (Impact). We also display the average
number of calls and the TotalImpact, which is calculated
by the average number of calls to that function multiplied with
Impact. This allows us to see if the performance decreased
or increased and by how much. In addition, we display
the difference of the highest and lowest value in the range
(RangeDiff). The goal of this is to help the performance
expert understand the ranking better. For example, when a
monitored value is 100 bytes outside the accepted range, there
is a difference whether the range difference is small (e.g., 50
bytes) or larger (e.g., 50 kilobytes). Additionally, we display
the number of test executions out of the total number of
test executions for this revision during which this function
wrote bytes. This is important to know, as a function does
not necessarily perform I/O in all executions, for example, an
error log function may be triggered in only a few of the test
executions. A final extension we make to our report is that
we collect data for a complete stack trace instead of a single
function. The main reasons for this are that 1) the behaviour
of a function may be defined by the origin from which it was
called (e.g., a database commit() function) and 2) this makes
the optimization process easier, as we have a more precise
description of the function behaviour.

Summarizing, the final report of our analysis contains a
ranking of stack traces. In this ranking, the highest ranks are
assigned to the traces of which the write behaviour most likely
has changed due to the source code changes in this revision.
The ranking is made based on the SC (low to high) and the
TotalImpact (high to low). In this way, the stack traces

2Note that this terminology is different from that in Section IV, in which a
SC close to 1 means the component is likely to be faulty. We do not use the
terminology ‘faulty’, as the effect of an update may be positive or negative.
Hence, in this case we feel the more intuitive explanation of a high SC is
the high similarity compared to the previous version.

which were impacted the most, and were outside the accepted
range in most test executions, are ranked on top. These stack
traces are the most likely to represent performance regressions.

Table IV shows the extended report. Throughout this paper,
we will refer to this type of report as the similarity report
for a revision. From the similarity report, we can see that the
average number of bytes written by generateReport()
has increased relatively a lot compared to revision 1: the value
for Impact is larger than the difference of the range in the
profile. However, as SC and TotalImpact indicate, this
was not the case for all test executions and the average total
impact was low. Additionally, we can immediately see from
this report that writeCache() was either added to the code,
or started doing I/O compared to the previous version, as there
was no accepted range defined for that function. In this case,
Impact represents the average number of bytes written by
that function. We can also see that the TotalImpact of the
additional write traffic is 5MB, which may be high or low,
depending on the test suite and the type of application.

VI. IMPLEMENTATION

In this section, we present the implementation of our
approach called SPECTRAPERF. SPECTRAPERF is part of the
open-source experiment runner framework GUMBY3, and is
available for download from the GUMBY repository. Our
implementation consists of two parts, the data collection and
the data processing part.
A. Data Collection

To collect data on a function-level granularity, we must
use a profiler or code instrumentation. In our implementation,
we use Systemtap [11], a tool to simplify the gathering of
information about a running Linux system. The difference
between Systemtap and traditional profilers is that Systemtap
allows dynamic instrumentation of both operating system
(system calls) and application-level functions. Because of the
ability of monitoring system calls, we can monitor applications
which use libraries written in different languages. In addition,
by instrumenting system calls, we can monitor data which
is normally hidden from higher-level languages such as the
number of bytes written or allocated.

These advantages are illustrated by the following exam-
ple. We want to monitor the number of bytes written by
application-level functions of an application that uses libraries
written in C and in Python, so that we can find the functions
that write the most during the execution of a test. Libraries
written in C use different application-level functions for
writing files than libraries written in Python. If we were to
instrument these libraries on the application level, we would
have to instrument all those functions. In addition, we would
have to identify all writing functions in all libraries. However,
after compilation or interpretation, all these functions use the
same system call to actually write the file. Hence, if we
could instrument that system call and find out from which
application-level function it was called, we can obtain the
application-level information with much less effort.

3http://www.github.com/tribler/gumby
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TABLE IV
SIMILARITY REPORT FOR TABLE III

Revision: 2

Function SC # calls Impact TotalImpact RangeDifference Runs

flushToDatabase() 1 50 0 0 600 3/3
generateReport() 0.58 50 496 B 24.8 KB 404 3/3
writeCache() 0 500 10 KB 5 MB N/A 3/3

By combining application-level and operating system-level
data with Systemtap, we can get a detailed profile of the
writing behaviour of our application and any libraries it uses.
Systemtap allows dynamic instrumentation [11] by writing
probes which can automatically instrument the entry or return
of functions. Listing 1 shows the workflow through (a subset
of) the available probe points in a Python function which
writes to a file. Note that, if we want to monitor other metrics
such as memory usage, we must probe other system calls4.

The subject system of our user study (see Section VII),
Tribler, is written in Python. Therefore, we implemented a set
of probes to monitor the number of bytes written per Python
function. Listing 2 shows the description of this set of probes 5.
By running these probes together with any Python application,
we can monitor write I/O usage on a function-level granularity.
1 ( b e g i n )
2 => py thon . f u n c t i o n . e n t r y
3 => s y s c a l l . open . e n t r y
4 <= s y s c a l l . open . re turn
5 => s y s c a l l . w r i t e . e n t r y
6 <= s y s c a l l . w r i t e . re turn
7 <= python . f u n c t i o n . re turn
8 ( end )

Listing 1. Set of available probe points in a writing Python function.

1 probe b e g i n {
2 /∗ P r i n t t h e CSV h e a d e r s ∗ /
3 }
4
5 probe py thon . f u n c t i o n . e n t r y{
6 /∗ Add f u n c t i o n name t o t h e s t a c k t r a c e ∗ /
7 }
8
9 probe s y s c a l l . open . re turn{

10 /∗ S t o r e t h e f i l e h a n d l e r and f i l e n a m e o f t h e opened
f i l e ∗ /

11 }
12
13 probe s y s c a l l . w r i t e . re turn {
14 /∗ Add t h e number o f b y t e s w r i t t e n ∗ /
15 }
16
17 probe py thon . f u n c t i o n . re turn{
18 /∗ P r i n t t h e p y t hon s t a c k t r a c e and t h e number o f

b y t e s w r i t t e n ∗ /
19 }

Listing 2. Description of probes for monitoring Python I/O write usage.

While Systemtap natively supports C and C++, it does
not include native support for probing Python programs.
Therefore, we use a patched version of Python, which allows
Systemtap to probe functions. This version of Python can be
automatically installed using GUMBY.

To monitor write actions, we count the number of bytes
written per stack trace. To maintain a stack trace, for every
Python function we enter (python.function.entry), we add the

4See http://asm.sourceforge.net/syscall.html for a (partial) list of system
calls in Linux

5See the GUMBY source code for the exact implementation.

function name to an array for that thread. Then, for all the
writes done during the execution of that function, we sum the
total number of bytes written per file (syscall.open.entry and
syscall.write.entry). After returning from the Python function
(python.function.return), we output the number of bytes writ-
ten per file for the function and the stack trace to that function
in CSV format. As a result, we have a CSV file with the size
and stack traces of all write actions during the test execution.
B. Data Processing

After collecting the data, we import it into a SQLite6

database using R7 and Python. From this database, we generate
a report for each test execution (the test execution report)
which shows:

1) The stack traces with the largest total number of bytes
written.

2) The stack traces with the largest number of bytes written
per call.

3) The filenames of the files to which the largest total
number of bytes were written.

The test execution report helps with locating the write-
intensive stack traces for this execution. In addition, when we
have monitored all test executions for a revision, we generate a
profile as described in the previous section. We use this profile
as a basis to analyze test executions for the next revision.

VII. DESIGN OF THE FIELD USER STUDY

We evaluate our approach in a field user study. The goal of
our study is to determine whether performance bottlenecks can
be found and optimizations can be verified using our approach.
In particular, we focus on these research questions:
Eval. RQ 1. Does our approach provide enough information
to detect performance regressions?
Eval. RQ 2. Does our approach provide enough information
to guide the performance optimization process?
Eval. RQ 3. Does our approach provide enough information
to verify the effect of made performance optimizations?
Eval. RQ 4. How does our approach work for test executions
which are influenced by external factors?

In this section, we present the experimental setup of our
field user study.

Field Setting: The subject of our study is Tribler [7], a fully
decentralized open source BitTorrent client. Since its launch
in 2006, Tribler was downloaded over a million times. Tribler
is an academic prototype, developed by multiple generations
of students, with approximately 100 KLOC. Tribler uses
Dispersy [12] as a fully decentralized solution for synchro-
nizing messages over the network. Tribler has been under

6http://www.sqlite.org/
7http://www.r-project.org/
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development for 9 years. As a result, all ‘low-hanging fruit’
performance optimizations have been found with the help of
traditional performance analysis tools. One of the goals for
the next version is to make it run better on older computers.
Therefore, we must optimize the resource usage of Tribler.
In the first part of our study, we analyze the unit test suite
of Dispersy. In the second part, we analyze a 10 minute idle
run of Tribler, in which Tribler is started without performing
any actions in the GUI. However, because of the peer-to-peer
nature of Tribler, actions will be performed in the background
as the client becomes a peer in the network after starting it.

Participant Profile: The questionnaire was filled in by two
participants. Participant I is a PhD student with 4 years of
experience with Tribler. Participant II is a scientific program-
mer with 5 years of experience with Tribler, in particular
with the Dispersy component. Both participants describe their
knowledge of Tribler and Dispersy as very good to excellent.

Experimental Setup: Tribler and Dispersy are being main-
tained through GitHub 8. We implemented a script in GUMBY
which does the following for each of the last n commits:

1) Execute the required test 5 times9, together with the
Systemtap probes

2) Load the monitored data into a SQLite database
3) Generate a test execution report for each test execution

as explained in Section VI-B
4) Compare the output of each run with the previous revision

and add this result to the activity matrix m
5) Calculate SC for every row in m
6) Generate a similarity report from the activity matrix as

displayed in Table IV
7) Generate a profile to compare with the next revision
After all commits have been analyzed, the data is summa-

rized in an overview report. The overview report shows a graph
(e.g., Figure 1) of the average number of total bytes written for
the test executions of a revision/commit and allows the user
to drill down to the reports generated in step 3 and 6, i.e.,
each data point in the graph acts as a link to the similarity
report for that commit. Each similarity report contains links
to the test execution reports for that commit. In addition, we
added a link to the GitHub diff log for each commit, so that
the participants could easily inspect the code changes made in
that commit.

In the Dispersy case study, we will analyze the unit test
suite of Dispersy for the last 200 revisions9. In the Tribler
case study, we will analyze a 10 minute idle run of Tribler for
the last 100 revisions9. Tribler needs some time to shutdown.
If for some reason, Tribler does not shutdown by itself, the
instance is killed after 15 minutes using a process guard.

Questionnaire: To evaluate our approach, we asked two
developers from the Tribler team to rate the quality and
usefulness of the reports. We presented them with the reports
for the Dispersy and Tribler case study and asked them to do
the following:

8http://www.github.com/tribler
9Note that these numbers were chosen based on the execution time of the

tests. We have no statistical evidence that this is indeed an optimal value.

TABLE V
OVERVIEW OF DISPERSY EVALUATION RESULTS

Phenomenon Participant # Ranking Helpful?

A I 1 Yes
B II 84 No

test execution reports No
C II 1 Partly

18 Yes
D I (area 1) 1 Yes

I (area 2) 1 Yes
II 1 Yes

1) To select the 3 most interesting areas (5-10 data points)
on the graphs and rate them 1 (first to investigate) to 3
(third to investigate)

2) To mark with 1-3 the order of the points they would
investigate for each area

Then, for each area/phenomenon and each selected data
point, we asked them to answer the following:

1) Which position shows the stack trace you would investi-
gate first/second/third, based on the report?

2) Does this lead to an explanation of the phenomenon, and
if so, which one?

3) If not, please drill down to the separate test execution
reports. Do these reports help to explain the phenomenon?

Finally, we asked them general questions about the reports
concerning the usability and whether they expect to find new
information about Tribler and Dispersy using this approach.
In the next section, we present the results of our study.

VIII. EVALUATION

A. Case Study I: Dispersy Unit Test Suite
Figure 1 contains the graph generated during the Dis-

persy study. In the graph, we highlighted the areas marked
by the participants (including their rankings for the most
interesting ones). Both participants selected phenomenon D
as the most interesting to investigate, due to the increased
writes of over 400 MB. Participant I considered the peaks
as separate phenomena, while participant II considered them
as one event. Furthermore, participant II expected that the
cause of phenomenon A was the addition of test cases which
resulted in more I/O, hence he selected different phenomena
to investigate. Next, we discuss each phenomenon and the way
the participants investigated them. Table V gives an overview
of which ranked position the participants analyzed and whether
the information provided was useful.

1) Phenomenon A: The increase was caused by a bugfix.
Before this bugfix, data was not committed to the database.
Participant’s Analysis: Participant I indicated that our ranking
correctly showed that the database commit function started
doing I/O or was called since the previous commit.

2) Phenomenon B: The drop in writes is due to the order
in which the git commits were traversed. Git allows branching
of code. In this case, the branch was created just before
phenomenon A and merged back into the main branch in
phenomenon B. In git, a pull request can contain multiple
subcommits. When requesting the git log, git returns a list of
all commits (including subcommits) in topological order. This
means that every merge request is preceded directly by its
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Fig. 1. Average number of bytes written during an execution of the Dispersy unit test suite for each commit

subcommits in the log. Hence, these commits were traversed
by us first. Figure 2 shows an example for the traversal order
of a number of commits.

Fig. 2. Order of traversal of commits in git log (C1 to C5)

Likewise, the drop during phenomenon B was caused by
testing ‘old’ code, which lead to a confusing report. This
can be avoided by testing only merge requests on the main
branch, without subcommits. However, this would also make
the analysis of the cause more difficult as the number of
changes to the code is larger when subcommits are combined.

Participant’s Analysis: Participant II was not able to explain
this effect from the report. However, after explaining this
effect, the phenomenon was clear to him.

3) Phenomenon C: In the updated code, a different test
class was used which logged more info.

Participant’s Analysis: Participant II indicated that he in-
spected the similarity reports for the highest and the lowest
point of the phenomenon. From the report for the highest point,
he suspected the #1 ranked stack trace caused the phenomenon.
However, as he was not convinced yet, he used the report for
the lowest point to verify his suspicions, in which this stack
trace was ranked #18. From the combination of the reports,
he concluded the number of calls changed from 270 to 400,
causing the phenomenon. After inspecting the code changes
using the GitHub diff page, he concluded that the different test
class was the cause for the increase in the number of calls.

Because the participant was not convinced by the #1 ranked
stack trace by itself, we marked this stack trace as ‘partly
useful’ in Table V. Following the advice from Participant II,
the reports were extended with the CallsDiff metric after
the user study. This metric shows the difference in the number
of calls to each stack trace, compared to the previous revision.

4) Phenomenon D: A new test case creates 10k messages
and does a single commit for every one of these messages,
introducing an additional 435 MB of writes.

Participant’s Analysis: Participant I marked this phe-
nomenon as two separate events, for the same reason as
explained for phenomenon B. Both participants were able
to explain and fix the issue based on the highest ranked

TABLE VI
OVERVIEW OF TRIBLER EVALUATION RESULTS

Phenomenon Participant # Ranking Helpful?

A I 45 Yes
B II - No
C I 1 No

I 65 Yes
II - No

D I 1 Yes
II 24, 26, 27 No
II 17, 31, 2 Yes

stack trace in the report. This was the trace in which a
message is committed to the database, had a SC of 0 and
a TotalImpact of 435MB. As the number of calls was
10k, the issue was easy to fix for the participants. The fix was
verified using our approach. From the graph, we could see
that the total writes decreased from 635MB to approximately
200MB. From the similarity report, we could see that the
number of calls to the stack trace decreased from 10k to 8.

B. Case Study II: Tribler Idle Run
Figure 3 contains the graph generated during the Tribler case

study. We have marked the areas selected by the participants.
It is obvious that this graph is less stable than the Dispersy
graph. The reason for this is that the behaviour during the idle
run (i.e., just starting the application) is influenced by external
factors in Tribler. Due to its decentralized nature, an idle client
may still be facilitating searches or synchronizations in the
background. As a result, the resource usage is influenced by
factors such as the number of peers in the network. Despite
this, the participants both selected phenomena C and D as
interesting. Participant II explained later that the difference in
the choice for A and B was because he preferred investigating
more recent phenomena, as their cause is more likely to still
exist in the current code. In the remainder of this section,
we discuss the phenomena and the participants’ evaluations.
Table VI summarizes these results for the Tribler case study.

1) Phenomenon A: During 2 out of 5 test executions,
Tribler crashed for this commit. Hence, less messages were
received, resulting in a lower average of bytes sent. The
actual explanation for this crash cannot be retrieved from these
reports, but should be retrieved from the application error logs.

Participant’s Analysis: From the reports, participant I was
able to detect that less messages were received, but he was not
able to detect the actual cause for this. Therefore, he granted
the behaviour to noise due to external factors.

SERG Bezemer et al. – Detecting and Analyzing Performance Regressions Using a Spectrum-Based Approach
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Fig. 3. Average number of bytes written during an execution of the Tribler idle run of 10 minutes for each commit

2) Phenomenon B: No significant changes were found, the
variation was due to external factors.

Participant’s Analysis: Participant II correctly diagnosed
this as noise due to external factors.

3) Phenomenon C: There was no clear explanation for the
drop in resource usage. It was probably due to less active users
in the network during the test execution.

Participant’s Analysis: Both participants concluded that less
messages were received and that the phenomenon did not
require further investigation.

4) Phenomenon D: The reason for the large increase in
writes is that the committed code made part of Tribler crash.
As a result, the idle run had to be killed after 15 minutes by
the process guard. This allowed the part of Tribler that still
was running to collect data longer than during the other runs,
with the high peak in the graph as the result.

Participant’s Analysis: Both participants correctly indicated
that more messages were received and they could both identify
the function which caused the large number of writes. They
did not directly indicate the partial crash as the cause. Both
participants advised to include 1) the actual duration of the
execution and 2) a link to the application logs in the report,
in order to be able to diagnose such cases better in the future.

In addition, the participants agreed that the function causing
the large number of writes used too much resources. This
resulted in a performance optimization, which was validated
using our approach. From the reports of the validation we
could see that the total number of written bytes decreased
by 340MB after the fix and from the similarity reports, we
could see that the stack trace disappeared from the report.
This means that the function stopped doing write I/O.

C. Evaluation Results
From our evaluation, we get an indication that our approach

is useful for finding performance optimizations. Especially in
the case of a test which is repeatable, such as the Dispersy
test suite, our approach leads to detection of performance
regressions which can be optimized. For test suites which are
influenced by external factors, such as the Tribler idle run,
our analysis results require deeper investigation and may show
more phenomena which are either difficult to explain using our
reports, or simply do not lead to performance optimizations.

Even so, the participants were able to correctly analyze and
diagnose 3 out of 4 phenomena in the Dispersy report and
2 out of 4 phenomena in the Tribler report. The participants

indicated, that with little more information, they would have
been able to correctly diagnose all phenomena. These results
are summarized in Table VII. Together with the participants,
we concluded that the reports miss the following information:

1) The CallsDiff metric, which displays the difference
in the number of calls to a function via the path showed
in the stack trace between two commits

2) A link to the application log, so that the user of the report
can check for the exit code and whether any exceptions
occurred during the test execution

3) The total duration of the test execution
4) An explanation of (or solution to) the ‘git log order’

effect, explained in Section VIII-A
After the user study, two phenomena out of two that could
be optimized, were optimized after the case study based on
our reports. In addition, both of these optimizations could be
validated using our approach after they were made. During
the case study, a phenomenon was also correctly explained to
be a validation of a performance bugfix. Finally, according to
the participants, four out of the five phenomena which did not
represent a performance regression, were easy to diagnose.

In Table V and VI, we see that in the Dispersy study
the problem was indicated by the top ranked stack trace in
most cases. In the Tribler study, this is not the case, but the
lower ranked stack traces were selected because of their high
negative impact. If we would rank the traces by the SC and
absolute value of TotalImpact (instead of exact value),
the traces would have had a top 3 rank as well. Hence, we
can conclude that the ranking given by our approach is useful
after a small adjustment. An observation we made was that
the participants all used the TotalImpact as a guideline
for indicating whether the change in behaviour of a stack
trace was significant enough to investigate further. After this,
they checked the SC to see in how many test executions
the behaviour was different. This indicates that the ranking
should indeed be made based upon a combination of these
two metrics, and not by the SC or TotalImpact alone.

IX. DISCUSSION

A. The Evaluation Research Questions Revisited
1) Does our approach provide enough information to detect

performance regressions?: From our evaluation, we conclude
that our reports provide, after adding the information explained
in Section VIII-C, enough information for detecting perfor-
mance regressions. In our study, two out of two detected
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TABLE VII
SUMMARY OF FIELD USER STUDY RESULTS

Dispersy Participant Correct? Tribler Participant Correct?

A I Yes A I Partly
II - II -

B I - B I -
II No II Yes

C I - C I Yes
II Yes II Yes

D I Yes D I Partly
II Yes II Partly

regressions were diagnosed correctly by the participants.
2) Does our approach provide enough information to

guide the performance optimization process?: Our evaluation
showed that our approach provides enough information for
guiding the performance optimization process as this user
study alone resulted in two optimizations (Dispersy phe-
nomenon D and Tribler phenomenon D) that have immediately
been carried through in the respective projects.

3) Does our approach provide enough information to verify
the effect of made performance optimizations?: Our approach
provides enough information to validate the two optimizations
made after the user study. In addition, the participants were
able to validate a performance fix made in the history of
Dispersy. The participants indicated the optimizations would
have been easier to validate if the difference in number of calls
for each stack trace was shown in the reports, hence, we will
add this in future work.

4) How does our approach work for test executions which
are influenced by external factors?: From our Tribler case
study, we get an indication that our approach can deal with
influence from external factors, as the participants were able
to completely explain 2 out of 4 performance phenomena and
partly explain the remaining 2. However, the results should be
treated with more care than for a test which is not influenced
by external factors, as they are more likely to represent noise
due to those factors. In future work, we will do research on
how we can minimize the effect of external factors.
B. Scalability & Limitations

For the moment, the overhead of our approach is consid-
erable, mostly due to the monitoring by Systemtap. However,
to the best of our knowledge, Systemtap is the only available
option for monitoring Python code with such granularity. In
addition, our approach is meant to run in testing environments
and as we do not take execution time into account in our
analysis, we do not see overhead as a limitation.

In this paper, we focused on write I/O. We set up our tooling
infrastructure such that the monitoring component can easily
be exchanged for another component that is able to monitor
different metrics. Hence, by changing the monitoring compo-
nent, our approach can analyze other performance metrics. In
addition, we will investigate how we can rank stack traces on a
combination of these metrics, rather than on one metric only.
This would help in making a trade-off between the various
performance metrics while optimizing.

Another limitation is that we compare a version with its
predecessor only. In future work, we will investigate if com-

paring with more versions can lead to new insights, such as
the detection of performance degradation over longer periods.

In our approach we do not deal with errors that occurred
during the test executions. When no profile could be generated
for a revision, we simply compare with the last revision that
has a profile. In future work, we will investigate how we
can inform the user about errors better, for example by using
information from the application logs in our reports.
C. Threats to Validity

We have performed our field study on an application which
has been under development for 9 years and is downloaded
over a million times. This application is well-developed and
‘low-hanging fruit’ optimizations are already done, because of
the importance of performance for Tribler due to its peer-to-
peer nature. The user study was carried out with developers
who have considerable experience with the application.

Concerning the internal validity of our approach, we ac-
knowledge that using the range of monitored values in the
profiles is not a statistically sound method. However, due to
the low number of test executions, we feel that using a value
such as the standard deviation does not add to the reliability
of the profiles. In addition, our evaluation shows that we can
achieve good results with this approach.

A threat to the validity of our evaluation is that we tested
all commits instead of just the merge commits. As a result,
we encountered crashing code more often, as these commits
do not necessarily provide working code. In addition, it
added some phenomena which are difficult to explain without
knowing this effect (see Section VIII). However, after making
the participants aware of this effect, they both agreed it would
be easy to detect in future investigations.

X. RELATED WORK

Spectrum-based analysis has been successfully used before
for fault localization [6], [9]. To the best of our knowledge, we
are the first to apply spectrum-based analysis to performance.

Comparison of execution profiles and the detection of per-
formance regressions have received surprisingly little attention
in research. Savari [13] has proposed a method which works
for frequency-based profiling methods. Our approach works
for any type of metric on a function-level granularity.

Bergel et al. [14] have proposed a profiler for Pharo which
compares profiles using visualization. In their visualization,
the size of an element describes the execution time and
number of calls. Alcocer [15] extends Bergel’s approach by
proposing a method for reducing the generated callgraph.
These visualizations require human interpretation, which is
difficult when the compared profiles are very different [14].
Our approach provides a textual ranking, which we expect to
be easier to interpret. However, we believe that the work of
Bergel et al., Alcocer and our approach can be supplemental
to each other, and we will investigate this in future work.

Foo et al. [16] present an approach for detecting per-
formance regressions by mining performance repositories.
Nguyen et al. [17] propose an approach for detecting perfor-
mance regressions using statistical process control techniques.
In contrast to our approach, these approaches do not give
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information on a function-level granularity, but focus on
reporting on differences in system-level metrics instead.

Horky et al. [18] and Heger et al. [19] propose approaches
for integrating performance tests into the unit test suite. Their
approaches require the generation of new unit tests, while our
approach can be attached to existing test suites.

XI. CONCLUSION

In this paper, we proposed a technique for detecting and
analyzing performance regressions using a spectrum-based
approach. By comparing execution profiles of two software
versions, we report on the functions of which the performance
profile changed the most. This report can be used to find
regressions or to validate performance optimizations. In this
paper, we focused on optimizing write I/O, but our approach
can easily be extended to other metrics such as read I/O, mem-
ory and CPU usage by changing the monitoring component.

In a field user study, we showed that our approach provides
adequate information to detect performance regressions and
guides the performance optimization process. In fact, our field
user study resulted in two optimizations made to our subject
system. To summarize, we make the following contributions:

1) An approach for the detection and analysis of perfor-
mance regressions

2) An open-source implementation of this approach, called
SPECTRAPERF

3) A field user study in which we show that our approach
guides the performance optimization process

Revisiting our research questions:
How can we monitor performance data and generate a

comparable profile out of this data? We have proposed an
approach using Systemtap to monitor data and we have showed
how to generate a comparable profile from this data.

How can we compare the generated performance profiles?
We have presented our approach for using a spectrum-based
technique to compare performance profiles, and provide a
ranking of the stack traces which were most likely to have
changed behaviour. This ranking is made based on the simi-
larity coefficient compared to the previous performance profile,
and the total impact of a source code change on performance.
In our user study, we showed the ranking was useful in 6 out
of 8 cases and helped the participants find two optimizations.

How can we analyze and report on the differences between
profiles? We have showed how we report on the data and
we have evaluated this reporting technique in a field user
study. During this study, we analyzed the performance history
of the open-source peer-to-peer client Tribler and one of its
components, Dispersy. The field user study resulted in two
optimizations, which were also validated using our approach.
During the user study, we found that our approach works well
for repeatable tests, such as a unit test suite, as the participants
were able to explain 3 out of 4 performance phenomena
encountered during such a test using our approach. We also
received indication that it works well for a test which was
influenced by external factors, as the participants were able
to explain 2 out of 4 performance phenomena completely and
could partly explain the remaining 2 for such a test.

How can we guide the performance optimization process
by doing performance regression tests? We have showed
that our approach for spectrum-based performance analysis
can guide the performance optimization process by detecting
performance regressions. The results of our field user study
alone, resulted in two optimizations to Tribler and Dispersy.

In future work, we will focus on extending our approach to
monitor different performance metrics such as memory and
CPU usage. Additionally, we will investigate how we can
report on trade-offs between these metrics.
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