
Delft University of Technology
Software Engineering Research Group

Technical Report Series

The maven repository dataset of metrics,
changes, and dependencies

Steven Raemaekers, Arie van Deursen, and Joost Visser

Report TUD-SERG-2013-005

SERG



TUD-SERG-2013-005

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Accepted for publication in the Proceedings of the 10th Working Conference on Mining Software
Repositories 2013, IEEE. http://dl.acm.org/citation.cfm?id=2487129

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permis-
sion from IEEE must be obtained for all other uses, in any current or future media, including reprint-
ing/republishing this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other
works.

http://dl.acm.org/citation.cfm?id=2487129


The Maven Repository Dataset of
Metrics, Changes and Dependencies

Steven Raemaekers∗†, Arie van Deursen† and Joost Visser∗

∗ Software Improvement Group, Amsterdam, The Netherlands
E-mail {s.raemaekers,j.visser}@sig.eu

† Delft University of Technology, Delft, The Netherlands
E-mail {s.b.a.raemaekers, arie.vandeursen}@tudelft.nl

Abstract—We present the Maven Dependency Dataset (MDD),
containing metrics, changes and dependencies of 148,253 jar
files. Metrics and changes have been calculated at the level of
individual methods, classes and packages of multiple library
versions. A complete call graph is also presented which in-
cludes call, inheritance, containment and historical relationships
between all units of the entire repository. In this paper, we
describe our dataset and the methodology used to obtain it. We
present different conceptual views of MDD and we also describe
limitations and data quality issues that researchers using this
data should be aware of.

Index Terms—Maven repository, Dataset, Data mining

I. INTRODUCTION

We present the Maven Dependency Dataset (MDD), which
contains metrics, changes and dependencies of 148,253 jar
files. The goal of this dataset is to facilitate replicable large-
scale research on software releases, versions and evolving
dependencies at the level of packages, classes and methods.
MDD contains code metrics, dependencies, breaking changes
between library versions and a complete call graph of the
entire Maven repository. This makes it possible to answer a
wide range of software evolution-related research questions,
such as the following:

• Can we predict when code changes will occur?
• Can we estimate the impact of these changes?
• How fast do libraries adapt to changes in dependencies?
• What patterns can we observe in changes of methods,

packages and classes?
• What code properties are associated with a high adapta-

tion and survival rate of library versions?
• How can we visualize library evolution through time?
MDD facilitates answering these and other research ques-

tions and we therefore invite other researchers to explore our
dataset and use it in innovative ways.

Source and binary jar files from the Maven repository1 were
used to fill the dataset, which is an online repository of open
source Java libraries. Software developers using Maven can
fully specify the entire build process of a software library
in a single configuration file, including required third-party
libraries. When building a project, Maven automatically down-
loads specified dependencies from a specified repository. The

1http://search.maven.org

system is mostly used for Java programs, but can be used for
other languages and even non-source code artifacts as well.
The mechanism addresses frequently occurring problems of
missing dependencies and compilation errors when rebuilding
software written on other developers’ machines.

We enriched the Maven dataset with a set of evolution-
related metrics to answer research questions about software
evolution and maintenance. The size of the dataset and the fact
that a large number of different development teams have been
releasing artifacts over a large timespan makes it a valuable
source for data analysis and hypotheses testing in the field of
software evolution. Collected data includes size information
(e.g. LOC, number of methods), evolution information (e.g.
number of removed methods per release, breaking changes
per release) and a complete call graph of the entire repository,
containing four different types of dependencies: containment,
historical, call and extension/inheritance.

This paper is structured as follows. In Section II, the
permanent download location of our dataset can be found.
In Section III, descriptive statistics are presented. Section
IV presents the data schemas of databases in our dataset.
In Section V, our data collection approach is outlined. In
Section VI, data quality issues and limitations of our dataset
are discussed.

II. DOWNLOAD LOCATION

The accompanying website for this paper, containing a
detailed per-column description of the dataset, an addendum
to this article and installation instructions for the dataset can
be found at the following location:

http://www.sig.eu/en/msr2013b

The dataset itself can be found at the following location:
dx.doi.org/10.4121/uuid:68a0e837-4fda-407a-949e-a159546e67b6

III. DESCRIPTIVE STATISTICS

We used a snapshot of the central repository dated July
30, 2011. Descriptive statistics of the dataset can be found in
Figure 1. As can be seen in the upper table, the dataset contains
a total of 148,253 jar files. When uploading a library to the
central repository, library developers can upload binary, source
and javadoc jars. Note that not all library versions are uploaded

SERG The maven repository dataset of metrics, changes, and dependencies

TUD-SERG-2013-005 1



with corresponding source and javadoc jars: only 101,413 of
148,253 libraries (68.4%) have source code available and only
78,766 libraries (53.1%) have javadoc available.

The second part of Figure 1 gives information on the size of
libraries. It shows that the 75th percentile of number of lines of
code is at 2,200, indicating that most libraries in the repository
are relatively small. There are 22,111 artifacts (projects) in the
repository, with on average 6.7 versions per artifact.

Number of binary jar files 148,253
Number of source jar files 101,413
Number of javadoc jar files 78,766
Unresolved jar references∗ 3,319
Total SLOC 350,571,247
Number of classes 4,174,150
Number of methods 37,406,546

min p5 p25 p50 p75 p95 max avg sd
loc 1.0 39.0 203 650 2.2k 17.5k 382k 4.4k 15.7k
m/j 1.0 4.0 21.0 69.0 240 1.5k 56k 468 1.7k
c/j 1.0 1.0 3.0 10.0 30.0 223 4.7k 52.23 166.7
d/j 1.0 1.0 2.0 5.0 8.0 18.0 211 6.5 7.02
v/a 1.0 1.0 1.0 3.0 7.0 26.0 383 6.7 12.24
a/g 1.0 1.0 1.0 2.0 4.0 19.0 306.0 4.87 12.23

Fig. 1. Descriptive statitistics for libraries in the Maven repository. loc = lines
of code, m/j = number of methods per jar, c/j = number of classes per jar,
d/j = number of dependencies per jar, v/a = number of versions per artifact,
a/g, number of artifacts per groupId. ∗Libraries sometimes refer to artifacts
or versions that are not present in our snapshot.

IV. DATA SCHEMAS

For performance reasons we used three different types of
database formats: a MySQL database, a Berkeley DB database
and a Neo4j graph database. The graph database is most
suitable to query graph-like structures such as call graphs. The
Berkeley DB database is an on-disk key-value store which can
look up metrics very quickly. We give a conceptual model of
each of these databases in this section.

A. MySQL database

The data schema of the MySQL database is presented in
Figure 2. As can be seen in this figure, it consists of the
following tables:
files The files table contains information on all library

versions. Metrics such as the number of methods (nrUnits), the
number of methods compared to the next version (nrNewUnits)
and other metrics are stored in this table. Libraries that are
referenced by other libraries but which were not found in
our dataset are entered in this table without a fullName. The
files table also contains stability metrics which we defined
in previous work [2]. For a more elaborate description of
properties of individual files, see [3].
stats The stats stats table stores metrics such as LOC,

McCabe, number of methods and number of classes for each
library version. It also contains SIG star ratings, which are
further described in [1].
units This table is not stored in MySQL but it is shown

here to demonstrate that there exist (conceptual) foreign key
relationships between the MySQL, Neo4j and Berkeley DB
databases. Units can be complete files, packages, classes or
methods, which are all stored in this table. Each unit belongs
to a certain file and has a fully qualified name (the name field).

files
fileId (PK) integer
fullName string
groupId string
artifactId string
version string
reservedNodeId integer
snapshotId integer
hasSource boolean
PageRank float
Betweenness float
Hubbiness float
Authoritativeness float
WRM float
CEM float
RCNO float
PNM float
nrUnits integer
nrNewUnits integer
nrOldUnits integer
nrRemovedUnits integer
deltaUn float
deltaUo float
hws float
maintainability float
CRS float
RL float
updated datetime
enabled boolean
packagePrefix string

stats
vol,dup,us,uc,ui,mc, 
cb,ci float
nm integer
nc integer
np integer
loc integer

changes
changeId (PK) integer
changeType (FK) integer
fileIdv1 (FK) integer
fileIdv2 (FK) integer
packageUnitIdv1 Long
packageUnitIdv2 Long
methodUnitIdv1 Long
methodUnitIdv2 Long
classUnitIdv1 Long
classUnitIdv2 Long
fieldUnitIdv1 Long
fieldUnitIdv2 Long

unitTypes
unitTypeId (PK) integer
parentType(FK)integer
description string

units
unitId (PK) Long
name string
unitType (FK) integer
parentId (FK) integer
fileId (FK) integer
LOC integer
McCabe integer
nrParams integer
usageCount integer

changeTypes
changeTypeId (PK) integer
description string
breaking boolean

Stored in BerkeleyDB

depTypes
depTypeId (PK)integer
description string

Only jar dependencies, 
complete graph stored in Neo4j

deps
callId (PK) integer
fromFileId (FK) integer
toFileId (FK) integer
isolation float

0..N

1..1

2..2

0..N
1..N

1..1

Only used by Neo4j

2..2

0..N

0..N

2..N

1..N 1..1

1..N

1..1

Fig. 2. The MySQL database schema. Some tables are present in the
other database formats and are presented here to give an overview of the
interconnection between the datasets. Foreign keys are drawn in the schema
but have been removed from the database due to performance reasons;
however, foreign key identifiers still match with primary key identifiers.

Metric values such as the McCabe, LOC and parameter count
are also stored in this table.
changes Different types of changes between library ver-

sions are stored in this table. Changes can be breaking,
meaning that source code has to be recompiled if using
a dependency that introduces such a change. Non-breaking
changes are less severe and do not require recompilation. Unit
identifiers are looked up in Berkeley DB and are stored in this
table, if found. In either case, names of the affected package,
class, method or field are also stored for each change.
deps This table contains all library dependencies as present

in the build configuration file of a project. When a library
depends on another library, a <dependency> section is
present in the pom.xml file of the project specifying the exact
groupId, artifactId and version of the library it depends on.
Also stored in this table is an isolation rating, specifying the
percentage of files that does not import the dependency and
is essentially a measure of encapsulation of a dependency in
a system. This table only contains library dependencies; all
other dependency types are stored in the Neo4j database.

Supporting tables such as changeTypes, unitTypes
and depTypes are reference tables that give additional in-
formation on properties of changes, units and dependencies,
respectively. For a complete description of all columns in
the MySQL database and instructions on how to query the
Berkeley DB database, see the online addendum.

B. Berkeley DB database

To make fast lookup of single methods, classes and pack-
ages possible, a Berkeley DB database was created. This
database contains information on 36,695,764 different meth-
ods, classes and packages. Indices on unique unit identifiers,
fully qualified name, fileId, unit type, groupId, artifactId and
versions have been created to facilitate searching on any of

The maven repository dataset of metrics, changes, and dependencies SERG

2 TUD-SERG-2013-005



those fields. The unique unit identifiers match the identifiers
as used in the Neo4j call graph. The fileId index refers to the
fileId column in the MySQL database. Unit type is a number
denoting the type of the unit: 1 = jar file, 2 = package, 3 = java
file, 4 = class, 5 = method. The script getunits.sh in the
replication package is the main interface to query the Berkeley
DB database directly and can be used to obtain information on
single methods, classes or packages or to obtain a list of units
based on a combination of values for any of the mentioned
indices.

C. Neo4j database

The Neo4j database contains all call graph information. A
conceptual model is shown in Figure 3 and an example is
shown in Figure 4.

next version

depends on subpackage

class(v)

extends/
implements

contains contains

calls

contains

next version next version next version

method(v)package(v)jar file(v)

Fig. 3. A conceptual model of units in the Neo4j database. (v) = version.

jar1.1
(Name, LOC, nrClasses, …)

jar1.2
(Name, LOC, nrClasses, …)

package1.1
(Name, nrClasses, …)

class1.1
(Name, nrMethods, …)

method1.1
(LOC, McCabe, …)

package1.2
(Name, nrClasses, …)

class1.2
(Name, nrMethods, …)

method1.2
(LOC, McCabe, …)

NEXTV

NEXTV

NEXTV

NEXTV

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS

CONTAINS
method2.1

(…)

CALLS

CONT.

class3.1
(…)

method3.1
(…)

CALLS

CONTAINS

CONT.

(CA
LLS

)

class4.1
(…)

EXTENDS

Fig. 4. An example of different versions of packages, classes, methods and
their relationships in the graph database. NEXTV = next version.

The database can be queried using the Cypher query lan-
guage2. More details can be found in the online addendum.

V. METHODOLOGY

The DAS-3 Supercomputer3 was used to process all jar
files. The Supercomputer consists of 68 dual-node 2.4 GHz
computing nodes with 4 GB memory each. The system runs
on ClusterVisionOS 2.1, which is based on Scientific Linux
4.3. The system has a central head node which contains the
database and distributes commands to the computing nodes.
The database was filled in multiple runs; each run took ap-
proximately one week. Since tasks can be easily parallellized
across a large number of machines, a speedup of approxi-
mately 60 times was achieved. Without the Supercomputer,
total running time was estimated to be more than one year.
Special software was developed to obtain all data. Eventually,

2http://docs.neo4j.org/chunked/stable/cypher-query-lang.html
3http://www.cs.vu.nl/das3

this software consisted of approximately 10,000 LOC of Java
and 3,000 LOC of bash, Python and R scripts. Source code is
available in the source package on the website, although exact
replication of the analysis using this package is impossible due
to required access to the Supercomputer. Also, source code and
binaries of the SAT are not included in the package.

Figure 5 shows the steps that were taken to obtain all data.

DAS-3
(process code)

A

MySQL
(files, stats,...)

Berkeley DB
(unit metrics)

Neo4j
(call graph)

source
code

Applications

(1)
(2)

(3)

(4)

(6)

(7)

(display graph, 
lookup system, …)

{unitID: metrics}

(5)

<unitID, unitID, type>

B

Fig. 5. An overview of the data collection approach taken in this paper.

The numbers in the figure correspond to the following steps:
(1) First, source code was processed using the Supercom-

puter. The Software Analysis Toolkit (SAT) of the Software
Improvement Group (SIG)4 was adapted to run in parallel in
multiple machines and was used to obtain metrics and call
graphs from source code.

(2) The SAT writes call graph and metric information to a
MySQL database for each different artifact. We do not save
all databases completely but we extract interesting information
from this database and put it in a separate MySQL database.

To detect changes between library versions, we use an
adapted version of Clirr5. This tool checks for breaking
changes between each two subsequent versions of binary
jar files. A breaking change is any change in the next ver-
sion of a binary jar file which causes compilation errors
in systems using it. These changes are also referred to as
binary incompatibilities and require users of those libraries
to adjust and recompile their code. There exist several types
of breaking changes; examples are public method and class
removals. The Eclipse Wiki has more information on binary
(in)compatibilities in Java6 and the Java Language Specifica-
tion7 contains formal definitions and explanations.

(3) Metrics on more than 200 million methods, classes and
packages were collected. To make fast lookup possible, we
stored this information in Berkeley DB, a dedicated on-disk
key-value store. We created several keys to obtain information
on units, such as fully qualified names, unique identifiers and

4http://www.sig.eu/en
5http://clirr.sourceforge.net
6http://wiki.eclipse.org/Evolving Java-based APIs
7http://docs.oracle.com/javase/specs/jls/se7/html/jls-13.html

SERG The maven repository dataset of metrics, changes, and dependencies

TUD-SERG-2013-005 3



library names. This enables fast retrieval of units that satisfy
certain selection criteria.

(4) We use the obtained call graph information to build
a graph of methods, classes, packages and jar files. These
units are connected through one of four different relationship
types: method call, inheritance, historical and containment. For
more information on this data schema, see section IV-C. This
call graph is not restricted to a single version of a library
but connects methods, classes and packages from all versions
of all libraries in the Maven repository. Mathematically, the
graph is a collection of tuples connecting two unit identifiers,
annotated with one of the four relationship types.

(5) To reduce the size of the Neo4j database, only unique
unit identifiers and connections between units are stored. These
identifiers are unitIds stored in the Berkeley DB database.
Neo4j makes fast querying of graph structures possible and
also enables the usage of specialized graph queries which re-
lational databases cannot handle (for instance, arbitrarily deep
transitive queries). Also, graph traversals can be performed
which start at a specific node and visit related nodes to obtain
specific information.

(6) The Neo4j graph can be used to query a specific library
or a specific method and to investigate changes through time.
The graph can also be used to visualize connected units.

(7) The information from Berkeley DB can also be used
directly, for instance to obtain a list of all methods present
in a certain version of a library or to get information on a
specific method in a specific library.

In the next section we discuss limitations and data quality
issues present in our dataset.

VI. LIMITATIONS

Since the dataset is based on a snapshot of the Maven
repository, updates to this repository after the snapshot date
are not taken into account into this dataset. Furthermore, users
of this dataset should be aware of the following limitations and
data quality issues:

A. Skipped libraries

For several reasons, not all libraries have been analyzed:
• Source jars are not available for specific library versions;
• Source jars sometimes contain other languages than Java,

contain only test code, property files or binary class files;
• Some source jars are corrupted.
We assume that these missing libraries are randomly dis-

tributed over the entire set of libraries, and that they do not
introduce a bias in our dataset.

B. Package prefixes

Due to the large size of the dataset it is impossible to
manually check data quality. This is also true for package pre-
fixes, which are stored in the files table and which were used
to calculate isolation ratings as stored in the deps table [3].
One problem is that some libraries use multiple package
prefixes. For example, com.thoughtworks.selenium
and org.openqa.selenium occur in the same library

version. To recognize an import from this library as third-party,
both strings have to be recognized. Also, some libraries do not
have a common package prefix, making automated detection
more difficult. We expect that there does not exist a bias in
systems that have missing package prefixes.

C. Usage frequencies

Our dataset also includes usage frequencies of methods,
which can be used to determine the expected impact of
changes [3]. We calculated these usage frequencies on binary
dumps of disassembled class files. This means that the calls
present in binary class files can be different from the calls
present in source code. This becomes visible, for instance, with
calls to StringBuilder.append, which is the most frequently
called method in the Maven repository. This, however, is
caused by the fact that the Java compiler replaces string
concatenation using “+” with calls to StringBuilder.

Another issue is whether the usage of libraries by other
libraries is representative for the usage of libraries by actual
systems. Since a library can be seen as a system in itself we
assume that the former is representative for the latter.

D. Wrong snapshot identifiers

A final data problem is the automatic labeling of snapshot
numbers as stored in the snapshotId column of the files table.
We used an algorithm from the Maven indexing software
itself, but manual inspection shows that subsequent versions
sometimes do not get subsequent version numbers. Manual
inspection of a sample of jar files shows that data errors like
these are only present in a small percentage of files and given
the size of the dataset, these errors will not be able to influence
large-scale correlations.

VII. CONCLUSION

We presented MDD, the Maven Dependency Dataset, which
contains information on 148,253 Java libraries. We presented
conceptual schemas of three different databases. First, we
presented a relational database which contains information on
individual files and dependencies as well as breaking changes
in these files. Next, we presented a key-value database contain-
ing information on individual methods, classes and packages.
Finally, we presented a graph database which contains all
connections between methods, classes and packages of the
entire Maven repository. We described our methodology to
obtain our data and we discussed data quality issues present
in our dataset.

REFERENCES

[1] I. Heitlager, T. Kuipers, and J. Visser. A practical model for measuring
maintainability. In Proceedings of the 6th International Conference on
Quality of Information and Communications Technology, pages 30–39,
Washington, DC, USA, 2007. IEEE Computer Society.

[2] S. Raemaekers, A. v. Deursen, and J. Visser. An analysis of dependence
on third-party libraries in open source and proprietary system. In Sixth
International Workshop on Software Quality and Maintainability, mar.
2012.

[3] S. Raemaekers, A. v. Deursen, and J. Visser. Measuring software library
stability through historical version analysis. In 28th IEEE International
Conference on Software Maintenance (ICSM’2012), sep. 2012.

The maven repository dataset of metrics, changes, and dependencies SERG

4 TUD-SERG-2013-005



Addendum

To the paper “The Maven repository dataset of metrics, changes, and dependenciesy”

I. MENTIONED WEBSITES

The following websites are mentioned in the paper:

Name Website
Apache Maven http://maven.apache.org
Maven Search http://search.maven.org
Apache Ant http://ant.apache.org
DAS-3 Supercomputer http://www.cs.vu.nl/das3
Clirr http://clirr.sourceforge.net
Eclipse Evolving API’s http://wiki.eclipse.org/Evolving Java-

based APIs
Java Language specifica-
tion on binary incompat-
ibilities

http://docs.oracle.com/javase/specs/
jls/se7/html/jls-13.html

II. DATASET EXPLANATION

A. MySQL database

Tables 1 to 8 show tables and columns present in our
MySQL database.

B. Neo4j database

The Neo4j database consists of a collection of tuples
of the following form:

<unitId1, unitId2, type>

where unitId1 is a 64-bit integer referring to an object
in the Berkeley DB database and unitId2 is a 64-bit
integer referring to another object in the Berkeley DB
database. These two objects can have one of four types
of relationships, which is stored as an integer in type and
is one of the following:

1) Next version
unitId1 is the next version of unitId2. For instance,
when two methods are present in two library
versions, one unitId would point to the method in
the first version and the other unitId would point
to the method in the second version of the library.

2) Extends/Implements
unitId1 extends or implements unitId2. When there
is an extends/implements relationship, both identi-
fiers refer to classes or interfaces.

3) Contains
unitId1 contains unitId2. Containment can have
different meanings depending on the types of units
referred to. For instance, a class can contain a
method. If this is the case, unitId1 refers to a
class and unitId2 refers to a method. Other types

of containment are a class that contains another
class or a package that contains a class.

4) Calls
unitId1 calls unitId2, which are both methods.

As an example of queries that can be answered using
the Neo4j database, consider the following examples:

Count the type of relationships present in the database:

START n=node(*)
MATCH n-[r]-m
RETURN type(r), count(*);

C. Berkeley DB database
The Berkeley DB database can be used to obtain

information on specific methods, classes and packages
in the repository. The script ./getunits.sh can be used
to extract information from this database. Below is an
example of a query that can be executed:
./getunits.sh
-j <fullmaven.jar path>
-b <Berkeley DB path>
-g "tv.bodil"
-n "tv.bodil.testlol.Testlol.startTimer()"
-v "1.2.2"

The results of this query are as follows:

Property Value
unitId 135108785976600
name tv.bodil.testlol.Testlol.startTimer()
groupId tv.bodil
artifactId maven-testlol-plugin
version 1.2.2
unitType 5 (method)
fileId 12
snapshotId 3
next version -
LOC 2
McCabe 1
nrParams 0
usageCount 9

To get help using this script, type ./getunits.sh -h.

REFERENCES

[1] I. Heitlager, T. Kuipers, and J. Visser. A practical model for
measuring maintainability. In Proceedings of the 6th Interna-
tional Conference on Quality of Information and Communications
Technology, pages 30–39, Washington, DC, USA, 2007. IEEE
Computer Society.

[2] J. M. Kleinberg. Hubs, authorities, and communities. ACM
Comput. Surv., 31(4es), Dec. 1999.

[3] S. Raemaekers, A. v. Deursen, and J. Visser. An analysis of
dependence on third-party libraries in open source and proprietary
system. In Sixth International Workshop on Software Quality and
Maintainability, mar. 2012.

1

SERG The maven repository dataset of metrics, changes, and dependencies

TUD-SERG-2013-005 5



files
Column name Description
fileId The unique file ID of the file in this table.
fullName The relative path to the file on disk.
groupId The groupId of the artifact.
artifactId The artifactId of the artifact.
version The version of the artifact.
reservedNodeId The node at which code was processed on the Super-

computer. Ranges from 1 to 60.
snapshotId The version number when ordering all library versions

from first to latest. Starts with 1.
hasSource Whether the binary jar has a source jar of the same

name in the same directory.
PageRank (Network metric) The PageRank of the library when

representing libraries and their dependencies as a graph.
Betweenness (Network metric) The betweenness of the library

(see [?]).
Hubbiness (Network metric) The hubbiness of the library

(HITS-algorithm, see [2]).
Authoritativeness (Network metric) The authoritativeness of the library

(HITS-algorithm, see [2]).
WRM The Weighted number of Removed Methods compared

to the previous version of this library
(see [3]).

CEM The Change in Existing Methods compared to the
previous version of this library (see [3]).

RCNO The Ratio of Change of New and Old methods mea-
sured with McCabe differences compared to the previ-
ous version of this library (see [3]).

PNM The Percentage of New Methods compared to the
previous verson of this library (see [3]).

nrUnits The total number of methods in this library version.
nrNewUnits The number of new methods compared to the previous

version of this library.
nrOldUnits The number of methods that are both in this and the

previous version of this library.
nrRemovedUnits The number of methods that have been removed from

the library compared to the last version of this library.
deltaUn The sum of McCabe values in newly added methods

as compared to the previous version.
deltaUo The difference in McCabe values of existing methods

as compared to the previous version.
hws The weight of this library version as used in summing

metric differences over all versions of a library
(see [3]).

maintainability The SIG Maintainability rating of a library (see [1]).
CRS The Commonality Rating of a System as defined in [4].
RL The Rating of a Library (indegree, see [4]).
updated The date that this library version was uploaded to the

central repository.
status Whether the library version has been processed by the

Supercomputer.
enabled Whether the file should be processed. Is false when

hasSource = 0 or when there are other reasons this file
should be excluded from analysis.

packagePrefix The “greatest common denominator” of package pre-
fixes as found in the library when scanning for
package statements. When multiple package prefixes
have been found they are separated with a comma. Is
used to detect dependencies in other files since these
are then imported with import statements.

Table 1. Columns in the files table, as stored in MySQL.

[4] S. Raemaekers, A. v. Deursen, and J. Visser. Measuring software
library stability through historical version analysis. In 28th IEEE
International Conference on Software Maintenance (ICSM’2012),
sep. 2012.

deps
Column name Description
callId The unique ID of the dependency as stored in this table.
fromFileId The library that specified the dependency.
toFileId The library that fromFileId depends upon.
isolation The percentage of files in fromFileId that contains an

import statement starting with the packagePrefix of
toFileId. For this packagePrefix, see the files table.

Table 2. Columns in the deps table, as stored in MySQL.

units
Column name Description
unitId The unique unit identifier as stored in this table.
name The fully qualified name of the unit.
groupId The groupId of the library this unit belongs to.
artifactId The artifactId of the library this unit belongs to.
version The version of the library this unit belongs to.
unitType The unit type of this unit (1 = jar file, 2 = package, 3

= java file, 4 = class, 5 = method)
fileId The fileId this unit belongs to.
snapshotId The snapshot number of this unit.
nextVersion The unitId of the next version of this unit.
LOC The number of lines of source code for this unit.
McCabe McCabe value for this unit (only when unitType = 5).
nrParams The number of parameters of this unit (only when

unitType = 5)
usageCount The number of times this unit is being used in the

repository (only when unitType = 5)

Table 3. Columns in the units table, as stored in Berkeley DB.

changes
Column name Description
changeId The unique change ID as stored in this table.
changeType The type of change as determined by Clirr. For an

overview of change types, see changeTypes.
fileIdv1 The fileId of the first file involved in the change.
fileIdv2 The fileID of the second file involved in the change.
packageUnitIdv1 the Berkeley DB unitId of the first version of the

package involved in the change. Can be null when the
change does not involve a package.

packageUnitIdv2 the Berkeley DB unitId of the second version of the
package involved in the change. Can be null when the
change does not involve a package.

methodUnitIdv1 the Berkeley DB unitId of the first version of the
method involved in the change. Can be null when the
change does not involve a method.

methodUnitIdv2 the Berkeley DB unitId of the second version of the
method involved in the change. Can be null when the
change does not involve a method.

classUnitIdv1 the Berkeley DB unitId of the first version of the class
involved in the change. Can be null when the change
does not involve a class.

classUnitIdv2 the Berkeley DB unitId of the second version of the
class involved in the change. Can be null when the
change does not involve a class.

fieldUnitIdv1 the Berkeley DB unitId of the first version of the field
involved in the change. Can be null when the change
does not involve a field.

fieldUnitIdv2 the Berkeley DB unitId of the second version of the
field involved in the change. Can be null when the
change does not involve a field.

Table 4. Columns in the changes table, as stored in MySQL.

changeTypes
Column name Description
changeTypeId The unique change type ID as stored in this table.
description A description of the type of change.
breaking Whether the change is breaking, i.e. whether it causes

a binary incompatibility in systems using it and which
thus have to be recompiled.

Table 5. Columns in the changeTypes table, as stored in MySQL.

2

The maven repository dataset of metrics, changes, and dependencies SERG

6 TUD-SERG-2013-005



unitTypes
Column name Description
unitTypeId The unique unit type ID as stored in this table.
parentType The unitTypeId of the parent of this unitTypeId.
description A description of the unit type.

Table 6. Columns in the unitTypes table, as stored in MySQL.

depTypes
Column name Description
depTypeId The unique dependency type ID as stored in this table.
description A description for this type of dependency.

Table 7. Columns in the depTypes table, as stored in MySQL.

stats
Column name Description
fileId The fileId to which the statistics belong.
vol The SIG star rating for volume on a 0.5 - 5.5 scale. 5%

of systems has a score between 0.5 and 1.5, 30% has
a score between 1.5 and 2.5, 30% has a score between
2.5 and 3.5, 30% has a score between 3.5 and 4.5 and
5% has score between 4.5 and 5.5.

dup The star rating for duplication on a 0.5 - 5.5 scale.
us The star rating for unit size (lines of code per method)

on a 0.5 - 5.5 scale.
uc The rating for unit complexity (McCabe) (0.5 - 5.5).
ui The star rating for unit interfacing (number of param-

eters per method) (0.5 - 5.5).
mc The star rating for module coupling (number of incom-

ing dependencies per file) (0.5 - 5.5).
cb The star rating for component balance (0.5 - 5.5).
ci The star rating for component independence (0.5 - 5.5).
nm The number of methods in the system.
nc The number of classes in the system.
np The number of packages in the system.
loc The number of source lines of code in the system.

Table 8. Columns in the stats table, as stored in MySQL.

3

SERG The maven repository dataset of metrics, changes, and dependencies

TUD-SERG-2013-005 7



Clirr type Description Binary compatible
1000 Increased visibility of class Binary compatible
1001 Decreased visibility of class Breaks compatibility
1002 Unable to determine class scope: in old class version -
1003 Unable to determine class scope: in new class version -
2000 Changed from class to interface Breaks compatibility
2001 Changed from interface to class Breaks compatibility
3000 Unable to determine whether class is private -
3001 Removed final modifier Binary compatible
3002 Added final modifier to class, but class was effectively final anyway Binary compatible
3003 Added final modifier Breaks compatibility
3004 Removed abstract modifier Binary compatible
3005 Added abstract modifier Breaks compatibility
4000 Added to the set of implemented interfaces Binary compatible
4001 Removed from the set of implemented interfaces Breaks compatibility
5000 Added to the list of superclasses Binary compatible
5001 Removed from the list of superclasses Breaks compatibility
6000 Added field Binary compatible
6001 Removed field Breaks compatibility
6002 Value of field is no longer a compile-time constant Binary compatible
6003 Value of compile-time constant has been changed Binary compatible
6004 Changed type of field Breaks compatibility
6005 Field is now non-final Binary compatibility
6006 Field is now final Breaks compatibility
6007 Field is now non-static Breaks compatibility
6008 Field is now static Breaks compatibility
6009 Accessibility of field has been increased Binary compatible
6010 Accessibility of field has been weakened Breaks compatibility
6011 Field has been removed, but it was previously a constant Breaks compatibility
7000 Method now implemented in superclass Binary compatible
7001 Abstract method is now specified by implemented interface Binary compatible
7002 Method has been removed Breaks compatibility
7003 Method has been removed, but an inherited definition exists Binary compatible
7004 Number of arguments changed Breaks compatibility
7005 Parameter has changed its type Breaks compatibility
7006 Return type of method has been changed Breaks compatibility
7007 Method has been deprecated Binary compatible
7008 Method is no longer deprecated Binary compatible
7009 Accessibility of method has been decreased Breaks compatibility
7010 Accessibility of method has been increased Binary compatible
7011 Method has been added Binary compatible
7012 Method has been added to an interface Breaks compatibility
7013 Abstract method has been added Breaks compatibility
7014 Method is now final Breaks compatibility
7015 Method is no longer final Binary compatible
8000 Class added Binary compatible
8001 Class removed Breaks compatibility
9000 Unable to determine the accessibility of class -

Table 9. Detected binary compatibilities and incompatibilities by Clirr.

4

The maven repository dataset of metrics, changes, and dependencies SERG

8 TUD-SERG-2013-005





TUD-SERG-2013-005
ISSN 1872-5392 SERG


