
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Maintenance Research in SOA Towards a
Standard Case Study

Tiago Espinha, Cuiting Chen, Andy Zaidman, Hans-Gerhard
Gross

Report TUD-SERG-2012-001

SERG



TUD-SERG-2012-001

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Paper accepted at the European Conference on Software Maintenance and Reengineering (CSMR
2012)

c© copyright 2012, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Maintenance Research in SOA
— Towards a Standard Case Study —

Tiago Espinha, Cuiting Chen, Andy Zaidman, Hans-Gerhard Gross
Delft University of Technology

The Netherlands
{t.a.espinha, cuiting.chen, a.e.zaidman, h.g.gross}@tudelft.nl

Abstract—Maintenance research in the context of Service
Oriented Architecture (SOA) is currently lacking a suitable
standard case study that can be used by scientists in order to
develop and assess their research ideas, and for comparison, and
benchmarking purposes. It is also well established in different
fields that having such a standard case study system brings many
benefits, in that it helps determine which approaches work best
for specific problems.

For this reason, we decided to build upon an existing open-
source system and make it available for other researchers to
use. This system, Spicy Stonehenge, provides many advantages
for carrying out maintenance research: it is complex, extensible
and, most importantly, openly available for anyone to use and
build upon.

With this paper, we introduce Spicy Stonehenge as the stan-
dard case study SOA system, and we also present our research
vision in the field of maintenance, reengineering, evolution and
testing of SOA systems, and how these goals fit together with
Spicy Stonehenge.

I. INTRODUCTION

While the actual term Service-Oriented Architecture (or
SOA) was first coined in the mid 1990’s by Gartner [1], [2],
the ideas behind it, namely building software systems that are
composed out of loosely coupled, interoperable components or
services, goes back further. It was, however, the technology of
web services, launched in 2000 as a set of standards to allow
computers to communicate with each other [2], that acted as
a catalyst for both industry and academia to really start inves-
tigating the possibilities of Service-Oriented Architectures. In
particular, SOAs promise to (1) allow businesses to be more
flexible as business needs change and (2) ease evolution due
to the loosely coupled nature of the system [3].

When looking at the past decade of research in service-
orientation, we can observe that although a lot of fruitful
research has been carried out (e.g., see [4], [5]), many of
the research efforts are isolated in nature. While this isolation
is not bad per se, it does hinder progress. Symptomatic of
the isolated nature of research in this area is the absence
of a common case study that can be used as a benchmark.
Indeed, Sim et al. report that benchmarking, when embraced
by a community, has a strong positive effect on the scientific
maturity of a discipline [6]. In particular, it allows to easily
compare solutions and to perform replication studies. In many
fields of software engineering, researchers have resorted to
benchmarking in order to compare approaches and ultimately
advance the field. Prime examples being the aspect-mining

community that settled on JHotDraw as a standard case
study [7], or the refactoring community that introduced the
LAN simulation [8].

In order to unify the SOA community around a single case
study, we propose a system that is at the same time realistic,
easy to understand and which most researchers should be able
to use as a “standard case study system”. The system we pro-
pose — Spicy Stonehenge — is based on Apache Stonehenge
and consists of an application composed out of several web
services. The open-source nature of Spicy Stonehenge and its
availability should stimulate researchers in the area of SOA,
that normally resort to small examples built specifically for
the context of their research, to choose for Spicy Stonehenge,
thus enabling the benchmarking process that the community
needs.

This paper makes the following contributions:

• We introduce Spicy Stonehenge, an open-source service-
based Java software system as a possible standard case
study for researchers working in the area of SOA.

• A brief survey of existing research initiatives in the area
of SOA from which we extract criteria that need to be
specified when performing a case study in order to allow
future comparison and/or replication.

• A research agenda for online evolution and online testing
in the area of SOA.

This paper is structured as follows: in Section II we present
a background of similar research being done in this field, Sec-
tion III describes our service-oriented system (Apache/Spicy
Stonehenge) in detail, Section IV provides an overview of
our future research agenda and lastly, Section V presents a
summary of what is discussed in this paper.

II. BACKGROUND RESEARCH

In our reconnaissance of the research area of Service-
Oriented Architectures, we noticed that there is no standard
case study being used by researchers. Furthermore, during
our exploration of the field we also got the impression that a
wide variety of small and/or closed source systems were being
used as case studies for evaluating the research. In order to
get a better feeling of how research in the area of SOA is
conducted, we have performed a small literature survey where
we specifically focused on the software systems that are being

SERG Espinha et al. – Maintenance Research in SOA Towards a Standard Case Study

TUD-SERG-2012-001 1



TABLE I
SELECTED SOA RESEARCH PAPERS WITH CASE STUDIES

Paper Description Complexity Impl. Tech. Availability

[9] Runtime monitoring of web service compositions 3 web services Unknown No
[10] Assumption-based composition and monitoring of WS 1 web service Unknown No
[11] Monitoring functionality of conversational services 1 web service with 3 interfaces Unknown No
[12] Assessing the performance impact of service monitoring 1 web service Unknown No
[13] Synthesis and composition of web services 2 services: AECS1 and MPS2 e-

payment service
Unknown Industry, API avail.

[14] Exception handling for web service orchestration 3 web services Unknown No
[15] Dynamic monitoring service compositions Unknown Unknown No
[16] Runtime monitoring requirements for service composition Unknown Unknown No
[17] Monitoring process for SOA Unknown, KIM3 project Unknown No
[18] Adopting and evaluating SOA in industry 700+ services J2EE, IBM WebSphere etc. Industry case
[19] Transformation-driven evolution for SOA Unknown Unknown No
[20] A case study in SOA-based platform design 120+ services Apache CXF etc. No
[21] Automic sysnthesis for composable web services 1 service: AECS1 Unknown Industry, API avail.
[22] Ensure interoperability for service-oriented systems del.icio.us4and OpenSocial5 Unknown Industry, API avail.

used in case study research.
In order to characterize the case study systems being used in

SOA research, we compiled Table I, which represents a small
subset of research papers in the area of SOA. The papers that
we selected for this overview originate from:

• The state-of-the-art report on service monitoring from
the European S-Cube6 project on software services [5].
We selected this survey because our research goals are
aligned with many of the papers mentioned in this report.

• A selection of recent papers published at venues like
CSMR, ICSE and ESEC/FSE, from which we expect a
thorough validation.

The 14 papers listed in Table I are all representatives of case
study research [23]. We now list some of our observations:

Self-created case study systems. From this selection of
papers we noticed that some authors created their own simple
non-industrial examples as case systems, which contain a
very small number of services, e.g., [11] and [14] have one
and three services respectively. It is arguable whether these
small case study systems are representative of real service-
based software systems. Some self-created systems also appear
more complex. For example, Baresi et al. [15] describe an IT
certification system which gives enrolled students a chance
to try a certification test for free. However, the paper only
describes the conceptual details of the system.

An important issue with self-created systems is that their
set-up might be favoring the researched technology, which
becomes extra hard to verify when these self-created systems
are not publicly available. Looking at Table I we see that
unfortunately, almost all systems are not publicly available.

1AECS: Amazon E-Commerce Services — http://webservices.amazon.com/
AWSECommerceService/AWSECommerceService.wsdl

2MPS: Monte dei Paschi di Siena Group(an important Italian financial
Group) — http://www.mps.it/

3KIM project — http://kim.cio.kit.edu/
4del.icio.us — http://delicious.com/help/api
5OpenSocial — http://code.google.com/apis/opensocial/docs/0.7/reference
6S-Cube — http://www.s-cube-network.eu

Closed-source systems. Some researchers are cooperating
with industry and have the chance to get a real-world system
as their research vehicle. For example, Momm et al. [17] apply
their approach to a practical scenario developed in a project
aiming to redesign a university’s business process; Nasr et
al. [18] provide an industry case study supported by a business
service IT company. Also, in the paper by Pistore et al. [10],
the authors mention that their approach was applied to some
real applications, but no more details are provided.

Industrial case studies are extremely important in software
engineering research, however, due to the closed-source nature
of these software systems they cannot be obtained by other
researchers. This means their results cannot be reproduced or
compared, which strengthens our call for a common case study
to compare techniques on.

Implementation technology. During this survey, we also
focus on investigating the implementation technologies used in
those case study systems, such as the programming language,
the underlying frameworks, the communication protocols, etc.
These pieces of information are necessary in different situa-
tions, e.g., (1) when practitioners want to use the experimental
results and want to verify whether the results are applicable
in specific circumstances or (2) when researchers want to
replicate a study or perform a meta-analysis [24].

However, as Table I shows, most papers do not provide
implementation details. The notable exceptions are paper [20]
and paper [18], which clearly mention that their systems are
built on the Apache CXF framework and the IBM WebSphere
respectively. In the case of industrial case studies, sometimes
the APIs are open, but the implementation techniques are kept
confidential.

Summary and recommendations. The small survey that we
present in this section makes it clear that comparative studies
or replications are difficult to perform considering the fact
that many (implementation) details are not presented in the
papers considered. While this is perfectly understandable in
the case of closed-source software systems, this is less so in

Espinha et al. – Maintenance Research in SOA Towards a Standard Case Study SERG

2 TUD-SERG-2012-001



other cases. These observations reinforce our stance that the
SOA (maintenance) community would benefit from having a
standard case study in order to benchmark solutions.

When reflecting on the case studies that we came across
during our small survey, we established a number of details
that we would ideally want to know from all case studies:

• The implementation technology (e.g., the programming
language or the communication protocol) and the used
frameworks.

• The complexity of the service-based system (e.g., the
number of services or interfaces).

• The availability of the system.
With these criteria in mind, we will introduce and describe

Stonehenge, the standard case study system that we propose
in the next section.

III. STONEHENGE

Apache Stonehenge7 is a simulation of the stock market
consisting of a web application and several web services.
Stonehenge provides the possibility to buy and sell shares
in a single stock market, with a single currency. Apache
Stonehenge was built as a joint cooperation between Mi-
crosoft and the Apache Software Foundation to showcase
service interoperability between different technologies. Our
goal, however, is not to explore the field of interoperability
but that of maintenance in SOA, and all that it entails. We
chose Stonehenge as it provides a real world example of
how services can interact together to compose a software
system. However, conscious of its size, we decided to extend
it in order to make it more realistic and complex. We have
extended it with several new features to make the system
more complex on what concerns business logic and number of
services. That is, we added the possibility to maintain several
wallets in different currencies, to exchange money amongst the
different currencies, and to use real-world data from the stock
market. The result of our changes is called Spicy Stonehenge8

which relies substantially on the business logic of the original
implementation. We have also ported the original JAX-WS-
based implementation to the Turmeric SOA platform9 due to
our research agenda. More on this can be found in Section IV.

A. Motivation

In our background research (see Section II) we have estab-
lished that in service-oriented research there is no case study
which researchers can use to compare their approaches and
results. For this reason, we decided to bring forth a system
that meets the criteria needed for a standard case study. For
such a system we feel it is necessary that: a) it reproduces the
behavior of a real-world system, b) is large or at least provides
many extension possibilities that all researchers can build upon
and c) it must be easy to port to different frameworks.

With Spicy Stonehenge we feel we have met these three
criteria. Spicy Stonehenge provides similar behavior to that of

7Apache Stonehenge — https://cwiki.apache.org/STONEHENGE/
8Spicy Stonehenge — https://github.com/SERG-Delft/spicy-stonehenge
9Turmeric — https://www.ebayopensource.org/index.php/Turmeric/

the stock market, it is already fairly large in number of services
and we plan on extending it to make it even more similar to
a real system. That way, we believe Spicy Stonehenge can
become the standard system which every researcher in this
field can use as the “common software system” mentioned
in [6].

B. System Description

The current version of the system is composed out of five
different services and two databases (Fig. 1). In this section
we provide an overview of what each service does and further
into the section, what data is stored in each table.

Also referring to Figure 1, solid arrows represent one
service invoking another whereas the dashed arrow represent
a publish/subscribe connection where the Order Processing
service can subscribe to topics on the external service.

Services:

• The Configuration Service acts as a registry for all the
deployed instances of the other services. All the other
services need, therefore, to know in advance the endpoint
of at least one instance of the Configuration Service.

• The Business Service mediates the interaction of the web
application with the business logic of the system. For this
reason, the Business Service contains all the operations
the web application is capable of performing. They are:
the buying and selling of stocks, user registration, statis-
tical information about the market and information about
stock prices.

• The Order Processing Service is solely responsible
for processing the buying and selling of shares. It is
meant to be invoked by the Business Service whenever
a user performs a purchase or sale of shares in the web
application.

• The Exchange Service makes use of Google’s API for
currency exchange. This service is invoked whenever the
user explicitly requests for currency to be exchanged from
a wallet in a certain currency into another wallet, with
a different currency. In the future, this service will also
become part of the purchase request for the cases when
the user wants to buy shares in a currency A but chooses
to use currency B.

• The Quote Service is in fact composed of two services.
Referring to Figure 1, the service described as Quote
Service is a normal pull-based service with a SOAP
interface that the Order Processing Service can invoke
to obtain data about specific stocks on-demand. On the
other hand we also have the Quote Data service which
performs two tasks: 1) it fills the Stock Database table
with data and continuously updates it with data from
Yahoo Finance, and 2) it provides a publish/subscribe
interface (implemented using the ZeroMQ library) which
other services, such as the Order Processing Service can
bind to in order to be notified for price changes in specific
stock symbols.

SERG Espinha et al. – Maintenance Research in SOA Towards a Standard Case Study

TUD-SERG-2012-001 3



Fig. 1. Spicy Stonehenge

Databases:
• The Stonehenge Database contains the information nec-

essary for the basic operation of the system. Namely it
contains user information, including how much money
and which stocks each user owns. It also contains in-
formation about the services’ endpoints and the mapping
between service instances (which instance should each
service use).

• The Stock Database contains solely information about
stock prices. This table is kept separately as it is meant
to be filled by an external service which continuously
checks whether there is new data and pushes it to the
database.

C. Usage Scenarios

With these services we can then have different usage sce-
narios. These are summarized in Table II.

Our planned extensions to the existing system aim at making
the interactions amongst web services more complex. For ex-
ample, the existence of multiple stock markets will create the
need for different instances of the Order Processing service.
Similarly, having an automatic conversion of currencies will
add a possible additional step to the purchase of stocks.

IV. RESEARCH AGENDA

The purpose of compiling and proposing Stonehenge as a
standard case study is tightly connected with our research

TABLE II
FEATURES AVAILABLE/PLANNED FOR SPICY STONEHENGE

Currently available features

Purchase and sale of stocks
Price information about stock symbols
Wallets in different currencies
Management of service endpoints
User registration

Planned features

Automatic conversion of currencies
Multiple stock markets
External bank entities
Stock options

goals. In past research we performed dynamic analysis on
SOA systems in order to identify dependencies amongst
services [25]. We have also investigated the challenges of
performing runtime monitoring of SOA systems [26]. Our
preliminary results are promising but our goal is to further in-
vestigate these topics. In order to support this earlier research,
we have also ported the original Apache Stonehenge to a
different platform, i.e., Turmeric SOA. This platform was built
and recently open-sourced by eBay and it already provides
many of the features that we require for runtime monitoring of
SOA systems. This platform is also highly scalable as proven
every day by supporting eBay’s own business. With it we hope
to replicate as closely as possible a real-world setting.

Espinha et al. – Maintenance Research in SOA Towards a Standard Case Study SERG

4 TUD-SERG-2012-001



We have also been collaborating with the engineers from
Intalio who are in charge of making Turmeric SOA open-
source and we plan on leveraging this collaboration to learn
about the pains of online SOA maintenance, reengineering and
testing.

In the future we would like to investigate online evolution
of SOA in more detail. This entails two major research tracks:
online updating of services and versioning, that is performing
an evolutionary step, and online diagnosis and testing, which
consists of assessing it. Following are a few of the research
questions we want to explore in the field of reengineering,
evolution and maintenance:

A. Online Updating and Versioning

Performing online updates of services comes with several
challenges. For instance, if the external behavior of a service
changes, this might cause other services to fail (since they
expect the older behavior). For this reason it is important to
know exactly which services depend on which, as to have a
clear picture of which services a code change can impact.

Similarly, when interfaces of services change, it might be
the case that a new version of the service is created and
the older one is kept for backwards compatibility. When this
happens, eventually there will be a large number of versions
of the same service. With runtime information about which
services are no longer used we can provide software engineers
with information to help mitigate this problem.

In an online system it is also important to have knowledge
about the usage patterns over time. This way, maintainers can
attempt to reduce downtime to a minimum by choosing the
periods of time with less usage on specific services.

These concerns can be summarized as three research ques-
tions:
RQ 1.1 How can we determine which services depend on

which, at runtime?
RQ 1.2 How can SOA maintainers determine the best periods

to perform maintenance?
RQ 1.3 When can a version of a service be deprecated based

on its usage profile?

B. Online Diagnosis and Testing

For our research, we assume that the business logic of all
deployed services is tested individually, and that the integration
of the deployed service in the SOA has been checked [27].
Checking the SOA during runtime then comes down to ob-
serving its behavior (through monitors) and waiting for a
failure to appear. The root cause of a failure can be pinpointed
through a specific lightweight diagnosis technique referred to
as spectrum based fault localization (SFL) [28]. This can be
used during runtime to convict or exonerate a potentially faulty
service [29]. SFL is based on a matrix of service involvement
in transactions carried out in the entire SOA. Based on this
matrix SFL can deduce likely faulty services during runtime
after a number of observations have been recorded.

However, applying SFL online creates a number of chal-
lenges:

RQ 2.1 How can we determine service involvement for SFL
through monitoring and tracing of the SOA? Our goal
is to determine the current architecture of the running
SOA, and, therefore the width of the SFL matrix. In other
words, how many services are there, and how are they
interconnected at a certain point in time?

RQ 2.2 How to limit a spectrum for online SFL? The spec-
trum of a service represents which transaction it has been
invoked in. Therefore, in the online case, a spectrum
can become indefinitely large. This question is related
to length of the SFL matrix. In other words, how much
execution history is required for the diagnosis?

RQ 2.3 How can we generate test cases for observations that
are required for a particular diagnosis, but that have never
been made?

RQ 2.4 What is the overhead of applying online SFL to SOA?
How can we determine the trade-off between the overhead
of the online testing and diagnosis and the systems’
performance?

Currently with Turmeric it is possible to visualize usage
profiles of different services over time allowing us to have
an idea of which services are most used and at what times.
This feature already partly addresses RQ 1.1 and RQ 2.1
as it provides information about which pairs of services are
invoked. One of our aims is to extend this feature and provide
more detailed information about the runtime system. This
way, developers in charge of maintaining SOA systems can,
for example, schedule maintenance tasks appropriately and
therefore lower the perceived downtime for customers.

V. SUMMARY

The motivation in many organizations for deploying and
using service oriented architectures is the loosely coupled
nature of their services, facilitating flexibility in adapting
systems to changing business requirements and alleviating
constant system evolution. Therefore, SOAs are predestined
to realize easily maintainable distributed systems.

Our research agenda addresses some of the challenges en-
countered when service oriented architectures are maintained
while they are operating and being used by various stakehold-
ers. We refer to this as online evolution and maintenance.

Working in this area and devising techniques for online
maintenance of SOA brings with it the requirement of having
a realistic case study system for experimentation, assessment,
and comparison. However, when venturing into the subject, we
noticed a chronic lack of suitable applications to be used as
case studies. We could have used an industrial application,
which would have facilitated our research goals, thereby
sacrificing open access to other researchers and obstructing
open discussion and exchange of ideas. On the other hand,
open source SOAs are not readily available, which might
well be attributable to the fact that the typical scalability
requirements of organizations that lead to SOA deployment,
are not apparent in the open source community.

In this paper, we have, therefore, addressed this lack by
proposing an open source SOA system, i.e., Spicy Stonehenge,

SERG Espinha et al. – Maintenance Research in SOA Towards a Standard Case Study

TUD-SERG-2012-001 5



which we developed out of an existing application, and now
put forward as standard case study system. We hope that in
the future more researchers will use and contribute to this
case in order to suit their particular research interests, but
also in order to facilitate comparison between all ideas and
techniques developed based on this system. That way, we hope
to contribute to the overall maturity of software maintenance
and reengineering research in general.

In addition to developing a suitable case study for our
research, we have also started to use it for our purposes, as
outlined in our research agenda.

ACKNOWLEDGMENT

The authors would like to acknowledge NWO for sponsor-
ing this research through the Jacquard ScaleItUp project. Also
many thanks to our industrial partners Adyen and Exact.

REFERENCES

[1] Y. V. Natis, “Service-oriented architecture scenario,” 2003, website last
visited November 30th, 2011. [Online]. Available: http://www.gartner.
com/DisplayDocument?id=391595

[2] N. M. Josuttis, SOA in Practice: The Art of Distributed System Design.
O’Reilly, 2007.

[3] N. Gold, C. Knight, A. Mohan, and M. Munro, “Understanding service-
oriented software,” IEEE Software, vol. 21, no. 2, pp. 71–77, 2004.

[4] B. Benatallah and H. Motahari Nezhad, “Service oriented architecture:
Overview and directions,” in Advances in Software Engineering, ser.
LNCS, E. Börger and A. Cisternino, Eds. Springer, 2008, vol. 5316,
pp. 116–130.

[5] S. Benbernou, L. C. M. S. Hacid, R. Kazhamiakin, G. Kecskemeti,
J.-L. Poizat, F. Silvestri, M. Uhlig, and B. Wetzstein, “State of the
Art Report, Gap Analysis of Knowledge on Principles, Techniques
and Methodologies for Monitoring and Adaptation of SBAs,” 2008,
deliverable # PO-JRA-1.2.1 of the S-Cube project.

[6] S. E. Sim, S. M. Easterbrook, and R. C. Holt, “Using benchmarking to
advance research: A challenge to software engineering,” in Proceedings
of the International Conference on Software Engineering (ICSE). IEEE
Computer Society, 2003, pp. 74–83.

[7] M. Ceccato, M. Marin, K. Mens, L. Moonen, P. Tonella, and T. Tourwé,
“Applying and combining three different aspect mining techniques,”
Software Quality Journal, vol. 14, no. 3, pp. 209–231, 2006.

[8] S. Demeyer, T. Mens, and M. Wermelinger, “Towards a software
evolution benchmark,” in Proceedings of the International Workshop on
Principles of Software Evolution (IWPSE). ACM, 2002, pp. 172–175.

[9] F. Barbon, P. Traverso, M. Pistore, and M. Trainotti, “Run-time mon-
itoring of instances and classes of web service compositions,” in
Proceedings of the International Conference on Web Services (ICWS).
IEEE Computer Society, 2006, pp. 63–71.

[10] M. Pistore and P. Traverso, “Assumption-based composition and moni-
toring of web services,” in Test and Analysis of Web Services, L. Baresi
and E. Di Nitto, Eds. Springer, 2007, pp. 307–335.

[11] B. Domenico and G. Carlo, “Monitoring conversational web services,”
in Proceedings of the 2nd international workshop on Service oriented
software engineering (IW-SOSWE). ACM, 2007, pp. 15–21.

[12] G. Heward, I. Müller, J. Han, J.-G. Schneider, and S. Versteeg, “As-
sessing the performance impact of service monitoring,” in Australian
Software Engineering Conference (ASWEC). IEEE Computer Society,
2010, pp. 192–201.

[13] A. Marconi and M. Pistore, “Synthesis and composition of web ser-
vices,” in Formal Methods for Web Services, ser. LNCS, M. Bernardo,
L. Padovani, and G. Zavattaro, Eds. Springer, 2009, vol. 5569, pp.
89–157.

[14] L. Ardissono, R. Furnari, A. Goy, G. Petrone, and M. Segnan, “Fault
tolerant web service orchestration by means of diagnosis,” in Proceed-
ings of the Third European Workshop on Software Architecture (EWSA),
ser. LNCS, vol. 4344. Springer, 2006, pp. 2–16.

[15] L. Baresi, C. Ghezzi, and S. Guinea, “Smart monitors for composed
services,” in Proceedings of the International Conference on Service-
Oriented Computing (ICSOC). ACM, 2004, pp. 193–202.

[16] K. Mahbub and G. Spanoudakis, “Run-time monitoring of requirements
for systems composed of web-services: Initial implementation and
evaluation experience,” Proceedings of the International Conference on
Web Services (ICWS), pp. 257–265, 2005.

[17] C. Momm, R. Malec, and S. Abeck, “Towards a model-driven develop-
ment of monitored processes,” Internationale Tagung Wirtschaftsinfor-
matik (WI2007), Karlsruhe, 2007.

[18] K. A. Nasr, H.-G. Gross, and A. van Deursen, “Realizing Service Migra-
tion in Industry - Lessons Learned,” Journal of Software Maintenance
and Evolution: Research and Practice (JSME), 2011.

[19] A. Ahmad and C. Pahl, “Customisable transformation-driven evolution
for service architectures,” in Proceedings of the European Conference
on Software Maintenance and Reengineering (CSMR). IEEE Computer
Society, 2011, pp. 373–376.

[20] B. R. Schmerl, D. Garlan, V. Dwivedi, M. W. Bigrigg, and K. M. Carley,
“Sorascs: a case study in soa-based platform design for socio-cultural
analysis,” in Proceedings of the International Conference on Software
Engineering (ICSE). ACM, 2011, pp. 643–652.

[21] A. Bertolino, P. Inverardi, P. Pelliccione, and M. Tivoli, “Automatic
synthesis of behavior protocols for composable web-services,” in Pro-
ceedings of the joint meeting of the European Software Engineering
Conference and the Symposium on the Foundations of Software Engi-
neering (ESEC/FSE). ACM, 2009, pp. 141–150.

[22] G. Denaro, M. Pezzè, and D. Tosi, “Ensuring interoperable service-
oriented systems through engineered self-healing,” in Proceedings of the
joint meeting of the European Software Engineering Conference and the
Symposium on the Foundations of Software Engineering (ESEC/FSE).
ACM, 2009, pp. 253–262.

[23] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and
A. Wesslén, Experimentation in Software Engineering: An Introduction.
Kluwer, 2000.

[24] B. Kitchenham, S. Pfleeger, L. Pickard, P. Jones, D. Hoaglin,
K. El Emam, and J. Rosenberg, “Preliminary guidelines for empirical
research in software engineering,” IEEE Transactions on Software
Engineering, vol. 28, no. 8, pp. 721–734, 2002.

[25] T. Espinha, A. Zaidman, and H.-G. Gross, “Understanding service-
oriented systems using dynamic analysis,” in Proceedings of the Interna-
tional Workshop on the Maintenance and Evolution of Service-Oriented
and Cloud-Based Systems (MESOCA). IEEE Computer Society, 2011,
pp. 1–5.

[26] C. Chen, A. Zaidman, and H.-G. Gross, “A framework-based runtime
monitoring approach for service-oriented software systems,” in Proceed-
ings of the International Workshop on Quality Assurance for Service-
Based Applications (QASBA). ACM, 2011, pp. 17–20.

[27] A. Bertolino and A. Polini, “Soa test governance: Enabling service
integration testing across organization and technology borders,” in
Proceedings of the IEEE International Conference on Software Testing,
Verification, and Validation Workshops (ICSTW). IEEE Computer
Society, 2009, pp. 277–286.

[28] É. Piel, A. González-Sanchez, H.-G. Groß, and A. J. C. van Gemund,
“Spectrum-based health monitoring for self-adaptive systems,” in Pro-
ceedings of the International Conference on Self-Adaptive and Self-
Organizing Systems (SASO). IEEE, 2011, pp. 99–108.

[29] T. W. Reps, T. Ball, M. Das, and J. R. Larus, “The use of program
profiling for software maintenance with applications to the year 2000
problem,” in Proceedings of the joint meeting of the European Software
Engineering Conference and the Symposium on the Foundations of
Software Engineering (ESEC/FSE), 1997, pp. 432–449.

Espinha et al. – Maintenance Research in SOA Towards a Standard Case Study SERG

6 TUD-SERG-2012-001





TUD-SERG-2012-001
ISSN 1872-5392 SERG


