
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Trace-Based Code Generation for
Model-Based Testing

Teemu Kanstrén, Éric Piel and Hans-Gerhard Gross

Report TUD-SERG-2009-017

SERG



TUD-SERG-2009-017

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Submitted for review at the Eighth International Conference on Generative Programming and Com-
ponent Engineering

c© copyright 2009, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Trace-Based Code Generation for Model-Based Testing ∗

Teemu Kanstrén
VTT

Kaitoväylä 1, 90571 Oulu, Finland
teemu.kanstren@vtt.fi

Éric Piel Hans-Gerhard Gross
Software Engineering Research Group

Delft University of Technology
Mekelweg 4, 2628CD Delft, The Netherlands

{e.a.b.piel,h.g.gross}@tudelft.nl

Abstract
Model-based testing can be a powerful means to generate test cases
for the system under test. However, creating a useful model for
model-based testing requires expertise in the (formal) modeling
language of the used tool and the general concept of modeling
the system under test for effective test generation. A commonly
used modeling notation is to describe the model through an existing
programming language.

This paper presents a technique to automatically generate an
initial model describing the system from execution traces, using
a common programming language notation. Turning this initial
model into a full model to be used for model-based testing of
the system under test then requires minimal effort compared to
writing a model from scratch. This is illustrated by a case study
application to a software component, which revealed real faults in
its implementation.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: testing and debugging—test execution, test management

1. Introduction
Testing is the most commonly used approach in industry for veri-
fication and validation of software (SW), and it can be regarded as
the ultimate review of a system’s specification, design, and imple-
mentation [9]. Testing can, often, consume up to half of the overall
development cost for a software project, while it adds nothing in
terms of functionality to the software. For this reason there is a
strong incentive towards test automation solutions that make the
testing process more effective.

One such solution is Model-Based Testing (MBT), which refers
to modeling the System Under Test (SUT), using a formalized
notation at a suitable abstraction level for what is being tested,
and using an MBT tool to analyze these models and automatically
generate tests based on them [19]. Once the models are made
and appropriate tools are available, model-based testing is a push-
button solution.

Unfortunately, making sufficiently formal descriptions, i.e.,
models of the SUT that can be used for automated processing and
test case generation, requires special expertise in the (formal) mod-
eling language of the used MBT tool, and in the method of mod-
eling the SUT for effective test generation. Even with the required
expertise, creating and maintaining the models is a non-trivial task,
making the cost-benefit trade-off hard to assess. These factors can

∗ The work presented in this paper has been carried out partially under
the Poseidon project in cooperation with the Embedded Systems Institute
(ESI), Eindhoven, The Netherlands, and supported by the Dutch Ministry
of Economic Affairs (BSIK03021 program). This work has been supported
by the Nokia Foundation.

significantly raise the threshold for industrial adoption of MBT
tools and techniques.

This paper presents a technique to automatically generate a suit-
able model for MBT based on a set of captured execution traces
of the SUT. This model describes the SUT as an Extended Finite
State-Machine (EFSM), in which the SUT is described in terms of
its external interfaces and global state attributes as a set of states,
transitions between these states, and constraints describing when
each transition can be taken. EFSM models are commonly used for
behavioral modeling and model-based testing [19, 16]. With suit-
able traces as input, the technique can generate a complete model
including the states, transitions, transition guards, test oracles to as-
sess errors while executing the generated tests, and a test harness
to connect the tests to the SUT implementation. Manual effort is
still needed to refine the generated model, and in order to finalize
certain properties of this model. Although, this work is minimal
compared to writing the complete model from scratch.

Obviously, this method of trace-based model generation can
only be “boot-strapped" from existing runtime scenarios, requir-
ing an initial set of SUT executions to produce the input traces. It
is, therefore, mainly suitable for software development projects for
which an initial set of sample executions (e.g. test cases or field
data) is readily available, such as integration of existing compo-
nents and services, re-engineering/reconfiguration of systems, and
the like. Because most typical software projects in practice exhibit
such properties, the presented approach can be applied to most ex-
isting software projects, and offers a semi-automated way to con-
structing system specification models suitable for MBT.

The rest of the paper is structured as follows. Sect. 2 briefly
outlines related work. Sect. 3 describes the tools and techniques
used in our approach for model code generation, and how they were
integrated to generate a behavioral model from execution traces
semi-automatically. Sect. 4 discusses the presented approach and
its limitations, presenting possibilities to address these limitations
in future work. Finally, conclusions summarize the paper.

2. Background and Related Work
Many different techniques have been developed that generate state-
based behavior models based on software execution traces. Existing
work has also addressed the automated generation of test harness
code to isolate a component from its environment, and the use of
invariant-based models in test generation. This section gives an
overview of previous research in these related areas.

Daikon1 is an invariant inference engine used to infer likely
invariants based on execution traces [8]. These invariants are de-
scribed as likely invariants, as they hold for all the observations in
the trace, which may or may not contain a representative sample

1 http://groups.csail.mit.edu/pag/daikon/

SERG Kanstrén, Piel, Gross – Trace-Based Code Generation for Model-Based Testing

TUD-SERG-2009-017 1



of the SUT behavior. Example invariants include x < 100 (value
of x is always observed to be less than 100), and x in Clients
(value of x is always observed to be included in the array Clients).
Many trace analysis and model generation techniques make use of
Daikon and invariants in modeling behavior. In general, the inferred
invariants can be described as properties that hold at certain points
of the SUT execution [8]. Invariants have also been proposed for
testing [8, 14].

Test generation techniques based on program invariants include
Agitator [4], Eclat [15] and the technique proposed by Xie and
Notkin [22]. Each provides a tool that generates test input data, and
based on the captured execution trace, presents a set of invariants
describing the SUT behavior to the user. The user can analyze
the proposed invariants to see if the SUT is working according to
specification, and turn the invariants into assertions with related
test input to form new test cases for the test suite. The approach
presented in this paper makes use of similar assertions to define
the state transition constraints that determine when a transition can
be made, and to suggest possible test data values for the generated
model. This is based on the execution trace and the relations of
parameter values, return values, and global state values.

Lorenzoli et al. [11] model a system based on a captured trace
including method invocations, parameter values, and global state.
Similar to our approach, they use Finite State Machines (FSM)
and Daikon-invariants to create the EFSM. These EFSM are used
for test case selection and test suite optimization with the goal
of increasing the coverage of the model. The approach presented
in this paper uses similar means to generate the EFSM, but with
different algorithms more suitable for MBT, and we also generate
model source code from these models, whereas Lorenzoli et al.
generate no tests nor code.

Mesbah and van Deursen [14] build an FSM for web-application
user interfaces with the help of an automated crawler tool that is
used to exercise the user interface and capture interaction sequences
that cause changes in the interface’s DOM tree representation. A
change in the DOM tree constitutes a new state, and this informa-
tion is used to model the FSM. Transitions are the clicks (input)
to the SUT that caused these changes in the DOM tree. They use
a set of their own invariants specifically built for web-applications
to describe the expected changes in the DOM tree in response to
input as test oracles. We also use an FSM and invariants as a ba-
sis for our model generation. However, our generated models are
different. We target specifically MBT and generate the model code
based on the EFSM. We also generate more specific oracles from
the traces, whereas their focus is more on generic and user defined
oracles.

Process mining is a technique developed to mine models for
business processes from event logs [20]. Support for process min-
ing has been implemented in a tool called ProM2, which can pro-
duce various types of models, such as petri-nets and FSM [21] from
the event logs. Process mining concepts have also been applied
in the software testing domain, to help in validation of service-
oriented applications [20]. We use the ProM tool to create the FSM
model as a basis in our model generation tool.

In order to generate a model for MBT of a component, we must
also generate the code that isolates it from its environment and ver-
ifies the correctness of its interactions with the environment. This
is commonly achieved with the help of (component) test stubs that
emulate the environment. When the stubs are made programmable,
they are often referred to as mock objects [12]. This usually means
that a component library provides interfaces to create these stubs,
and that for each stub it is possible to define the expected interac-

2 http://www.processmining.org

tions with the SUT and the values that should be returned in each
case.

Tillmann and Schulte [18], and Saff et al. [17] provide means
to automatically generate mock objects for the SUT. Tillmann and
Schulte use static analysis (symbolic execution) and Saff et al. use
dynamic analysis to capture the behavior expectations and return
values for the mock objects. Both focus on one test at a time, to
allow the generation of mock objects for exactly the purposes of
this test. The test for which mock objects are defined is determined
by factoring a larger test to smaller tests [17], or based on static
analysis of code with symbolic execution [18].

A more specific test harness generation method for service-
oriented mobile applications is presented by Bertolino et al. [3].
They assume the SUT is described using formal web-service de-
scription languages, such as WSDL and WS-Agreement. Based on
these specifications, they generate test stubs for components with
which the SUT is interacting. WSDL is used to define the stub in-
terfaces, and WS-Agreement to define the expected behaviour of
the SUT for the stubs. Additionally, using simulators, they gener-
ate data to test the SUT in different situations.

3. Trace-Based Model Code Generation
This section describes our approach of generating model code for
MBT. We use the term Model-Based Testing similar to that of Ut-
ting and Legeard [19] who describe it as “Generation of test cases
with oracles from a behavioral model”. The model describes the
expected behavior of the SUT, and is used to generate sequences of
method invocations and data as SUT stimulus. In order to validate
the correctness of the responses from the SUT, test oracles check
the expected output data and interaction sequences. The basic con-
stituents of an MBT system include the system specification that
is used as a basis to create the test model, the test tool required to
generate tests based on this model, and the test harness (for online-
testing) or test script generator (for offline-testing). In order to gen-
erate a usable model for MBT, we create all these parts from the
execution trace.

The idea of turning the MBT approach around, and using execu-
tion traces from the implementation to provide the model was de-
scribed by Bertolino et al. [2] as anti-model-based testing, although
they never took it further than describing the concept. The produced
model can then be used to verify the implementation against the
specification and to generate additional tests for the SUT. This is
what we do in our approach of generating the model code based on
execution traces.

In our approach, the SUT is first exercised as guided by existing
program execution definitions, according to a usage profile. Typ-
ical examples in the context of dynamic analysis, as we apply it,
include existing test cases and example applications [6]. Useful in-
put data for this can also be captured from the field data of actual
application uses [7]. MBT is generally considered to be a black-box
approach, based on the SUT’s external interfaces and related spec-
ifications [19]. Similarly, our approach to model code generation is
a black-box approach, and only data from the external interfaces of
the components is captured.

Based on the captured traces, we produce the EFSM model.
This process includes using ProM to generate the FSM, Daikon
to generate the invariant model, combining these together to form
the EFSM, and finally generating the model code from this EFSM
in the format of the ModelJUnit3 MBT tool. The generated model
code includes the state transitions, guard constraints, test input, the
test harness, and the test oracle. This model can be executed with

3 http://www.cs.waikato.ac.nz/~marku/mbt/
modeljunit/

Kanstrén, Piel, Gross – Trace-Based Code Generation for Model-Based Testing SERG

2 TUD-SERG-2009-017



ModelJUnit to generate and execute tests in order to assess the
implementation of the SUT.

Although, the process of generating the model code from the
traces is completely automated, the generated model still requires
some manual refinement. The user is required to have some knowl-
edge of the SUT. Basically the user must know how to set up the
SUT for testing, and how to create any non-primitive objects and
data-structures it requires. This is due to limitations of the invari-
ant model, which is used as a basis to generate input data for the
model code. These limitations will be described in more detail in
the following subsections. The user should also have a specification
available to tell what is the correct expected behavior of the SUT,
in order to be able to assess the correctness of the generated model.

We generate also the test oracle for the test model coming
from the trace. This oracle is based on the assumption that the
trace represents the correct behavior of the SUT. Excluding, for
example, tests that exercise error revealing inputs on the SUT and
validate its error handling functionality. This is important because
the traces are used in generating the test oracles. When the trace
includes erroneous inputs and behavior, it cannot be used as a
basis for creating expectations for the test oracle to assess when
the response to the model execution is correct. However, we realize
that in practice it is not always possible to come up with a set of
executions that exhibit this property of correctness perfectly, so this
is not a strict requirement. Not having them, simply means that as
more “error state”-related behavior will be represented in the traces,
this leads to more refinement effort needing to be performed by the
model engineer, in order to retrieve a good model, eventually.

The code generation process described in this paper makes use
of several existing tools and techniques, including Daikon, ProM,
ModelJUnit, JUnit4 and EasyMock5. JUnit is a commonly used
unit testing framework for Java, employed to execute test cases,
and to provide the test oracle assertion language for verifying the
correctness of output data received from the SUT. EasyMock is a
mock-object-framework for Java. The approach presented here has
been implemented in an automated tool and is available as open
source6.

3.1 ModelJUnit Notation
In order to provide required background information for the model
code generation technique, this subsection presents the notation of
the ModelJUnit tool for which the code is generated. Listing 1
shows a model for a simple vending machine in the ModelJUnit
notation, adapted from [1]. This vending machine accepts 25 cent
and 50 cent coins and allows the user to get the product when a
total of 100 cents has been received. It does not allow inserting
more than 100 cents, and once this limit is reached, the only action
available is the “vend” action. When this is done, the machine goes
back in the initial state and requires another 100 cents to vend.
Figure 1 is an FSM visualization of the same model as provided
by the ModelJUnit visualization support.

As shown in Listing 1, ModelJUnit uses the Java programming
language notation for its models. The model code is a standard Java
class implementing the FsmModel interface. This interface defines
that the class must implement the getState() and reset()meth-
ods. The getState() method is used by ModelJUnit to query the
current state of the model, and it uses this information as feedback
to the test generation algorithms. The reset() method is invoked
by ModelJUnit when it starts the generation of a new test case. Typ-
ically, several test cases are generated from a model, with a given
goal, such as satisfying a chosen coverage criterion. The reset()

4 http://www.junit.org
5 http://www.easymock.org
6 http://sourceforge.net/projects/noen/

public class VendingMachineModel implements FsmModel {
private int money = 0;

public Object getState() { return money; }

public void reset(boolean b) { money = 0; }

@Action public void vend() {money = 0;}
public boolean vendGuard() {return money == 100;}

@Action public void coin25() {money += 25;}
public boolean coin25Guard() {return money <= 75;}

@Action public void coin50() {money += 50;}
public boolean coin50Guard() {return money <= 50;}

}

Listing 1. Example EFSM adapted from [1].

0

50

coin50 25

coin25

75

coin25

100

coin50

coin25

vend

coin25

coin50

Figure 1. FSM for Listing 1.

method must set the model into its initial state for the next test case
(transition sequence) that is to be generated.

A second part of the model is defined using Java annotations and
naming conditions. This part defines the actual states, transitions
and constraints for allowing the transitions to happen. As shown
in Figure 1, the vending machine has five different states. These
are the values returned by the getState() method. This value is
updated by the transition methods, which in Listing 1 are vend(),
coin25(), and coin50(). These symbolize the different state
transitions of the state-machine, in this case, either inserting one of
the allowed coins or using the vend-functionality. They all update
the money state variable accordingly. All such transitions methods
are identified by ModelJUnit through the @Action annotation.

Each transition is only allowed to happen when the amount of
money inserted into the machine is below or above a certain sum.
Vending is only possible when 100 cents are inserted. Inserting 25
or 50 cents is not possible when the total amount of money inserted
would go over the maximum of 100. These constraints are defined
in listing 1 in the methods vendGuard(), coin25Guard(), and
coin50Guard(). ModelJUnit identifies and associates these con-
straint functions with their corresponding transitions by matching
the method names. Each @Action-tagged transition method is ex-
pected to have a guard method with the same name but with Guard
appended to the name. When this method returns true, the transi-
tion is permitted, and the related @Action-tagged method can be
called. When the guard method returns false, the transition is not
permitted, and the related @Action-tagged method is not called.

There are two essential elements missing from the model code
in Listing 1. The transition methods update the global state of the
model, but do not actually generate or execute any tests for these
updates. For example, in case of online testing, the coin25() tran-

SERG Kanstrén, Piel, Gross – Trace-Based Code Generation for Model-Based Testing

TUD-SERG-2009-017 3



sition method could make a call to the actual SUT (assumed here to
be represented by an object name sut) as sut.insert25(). This
would also make the model state transition manifest in the SUT,
causing in effect a test step to be executed. We call this the test har-
ness, as it binds the MBT tool to the SUT. Another option would
be to print out test scripts for an external tool, but we concentrate
on online testing in this paper.

The second element missing from Listing 1 is the test oracle.
This is the part that assesses whether the SUT provides the cor-
rect response to the input provided by the MBT tool. For example,
in the coin25() transition method this could be a simple asser-
tion assert(money == sut.getInsertedCoins()) statement
inserted after the money += 25 statement that updates the model
state, to verify the (expected) state in the model vs the (actual) state
of the implementation. These parts are further illustrated in our case
example in the following subsections.

3.2 Case Example
To illustrate our model generation approach, throughout the rest
of the paper we show its application to one of the components
(Merger) of a maritime surveillance system. This system receives
information broadcasts from ships called AIS messages [10] and
processes them in order to form a situational picture of the coastal
waters.

The (simplified) architecture of this system is displayed in Fig-
ure 2. The system comes with a specification in plain English defin-
ing behavior and communication protocols of its components. The
components are implemented in Java specifically crafted to be exe-
cuted under Fractal [5], a component middleware platform.

ClientRcv

World

LS1

LS2

LS20

Filter

Monitor

Plotter

WarningMergerRcvAISin
MergerAISin

AISin

Figure 2. Architecture of the surveillance system used as example.

The Merger component was selected as SUT because it exhibits
complex interaction with the other components. It acts as a tempo-
rary database of AIS messages, and client components can consult
it to track information for a ship. It can also be asked by clients to
be notified of certain ship events, and it is key to displaying ship
tracks on the screen of the command and control center. Merger
was used as target component for experiments evaluating the model
code generation approach. The goal is to generate a suitable test
model for Merger, and to validate the implementation against the
specification by executing the model produced and generating test
cases based on it. When we applied the technique during the case
study presented here, we were able to expose five previously un-
known faults in the SUT and one ambiguity in the specification.
This demonstrates the usefulness of our approach in practice. How-
ever, in this paper we focus on describing the code generation pro-
cess and related properties, and do not discuss the details of the
discovered faults or other properties not related to model genera-
tion.

As mentioned earlier, the trace used for model code generation
is based on the external interface and the global state of the SUT.
Different systems can have various kinds of external interfaces, and
capturing the passed messages and representing them may require
different approaches. In our case, the SUT external interfaces are
represented by Java interfaces, implemented by Merger according
to the Fractal middleware. Captured data related to its external
interfaces includes method calls made into Merger, made by other

components (its input interactions), and calls to other components
made by Merger (its output interactions). Captured data related
to its global state are lists of connected clients, subscribed clients,
and received AIS messages. The global state is accessed by a
test data interface implemented by Merger, although the same
information could be constructed to provide a “mock” global state
at the same time as its external interfaces are monitored, as the state
is modified through these messages passed through the component
external interfaces. This information is available in the component
specification. Although, our tracing mechanism is tuned for the
needs of this case study, we believe it can be adjusted to most
other systems with relative ease, as most software components and
systems provide external interfaces with messaging mechanisms.

The completeness of the provided trace is also important. It de-
termines the completeness of the generated model. To start with, we
run the complete system shown in Figure 2, with about 20000 AIS
messages, captured from actual ship interactions. This produces the
FSM as visualized by ProM in Figure 3. Since this is not a complete
description of the SUT with respect to its non-formal specification,
it is augmented with six additional stimuli, producing a more elab-
orate FSM (shown in Figure 4). Combining all executions into one
single set, the final FSM is generated (shown in Figure 5). This new
FSM is considered a good and representative set of executions for
generating the code of the model.

The huge set of field data, passed through the system, is found
sufficient as basis for building the invariant model. However, the
specific part of the system, which is only exposed through the six
previously mentioned additional test stimuli, is not well covered
through field data. This results in fewer, and less useful invariants
for this parts of the system. Since, here, our focus is on model gen-
eration, and not on input data generation, there is no requirement
for crafting further test cases and input data as input stimuli. With
the resulting test set we can proceed to the generation of the model
code for the SUT under consideration, in the next sub-section.

[{}]

[{0=Cconnect}]

Cconnect
complete

[{0=AISin}]

AISin
complete

Cconnect
complete

AISin
complete

[{0=Cnew}]

Cnew
complete

[{0=Cpublish}]

Cpublish
complete

Cnew
complete

[{0=Csubscribe}]

Csubscribe
complete

AISin
complete

Cnew
complete

[{0=Cdispose}]

Cdispose
complete

AISin
complete

Cpublish
complete

Cdispose
complete

AISin
complete

Cdispose
complete

Figure 3. Merger FSM produced by ProM for the field data.

Kanstrén, Piel, Gross – Trace-Based Code Generation for Model-Based Testing SERG

4 TUD-SERG-2009-017



[{}]

[{0=Cconnect}]

Cconnect
complete

[{0=AISin}]

AISin
complete

[{0=Crequest}]

Crequest
complete

[{0=Cnew}]

Cnew
complete

[{0=Cdisconnect}]

Cdisconnect
complete

[{0=Csubscribe}]

Csubscribe
complete

[{0=Cunsubscribe}]

Cunsubscribe
complete

AISin
complete

[{0=Creply}]

Creply
complete

Cconnect
complete

Crequest
complete

Cnew
complete

Crequest
complete

AISin
complete

Figure 4. Merger FSM produced by ProM for the focused tests.

[{}]

[{0=Cconnect}]

Cconnect
complete

[{0=AISin}]

AISin
complete

Cconnect
complete

[{0=Crequest}]

Crequest
complete

[{0=Cnew}]

Cnew
complete

[{0=Cdisconnect}]

Cdisconnect
complete

[{0=Csubscribe}]

Csubscribe
complete

[{0=Cunsubscribe}]

Cunsubscribe
complete

AISin
complete

[{0=Creply}]

Creply
complete

Cconnect
complete

Crequest
complete

AISin
complete

Cnew
complete

[{0=Cpublish}]

Cpublish
complete

Crequest
complete

Cnew
complete

Csubscribe
complete

Cconnect
complete

AISin
complete

AISin
complete

Cnew
complete

[{0=Cdispose}]

Cdispose
complete

AISin
complete

Cpublish
complete

Cdispose
complete

AISin
complete

Cdispose
complete

Figure 5. Combined Merger FSM produced by ProM.

3.3 Transforming the FSM into MBT model code
The execution trace of the SUT is transformed into an FSM with
ProM’s transition system miner component (described in detail
in [20]). The tool can be used to visualize the trace in the form of an
FSM. It can also be used as an algorithm library to create and access
the FSM in terms of a set of data structures, bypassing the GUI.
These data structures represent the basis for the code generation
from the FSM. Here, an essential concept is the state.

The execution trace is based on input- and output-method in-
vocations, made through the SUT’s external interfaces. The FSM

describes the SUT in terms of these method calls, where each mes-
sage passed through one of the interfaces matches a state in the
FSM. However, the states of the FSM cannot be used directly to
describe the states in the generated EFSM. Instead, the differences
between the input- and output-methods comprised in the trace have
to be considered.

The ModelJUnit EFSM notation describes the SUT in terms of
state transitions. We consider a state transition to be triggered by
an invocation of an input-method to the SUT. Thus, for each input-
method in the FSM, a matching @Action-method is generated in
the model code. This is illustrated in Listing 2, showing examples
of generated reset(), @Action transition, and transition guard
methods for the Merger component. Here, the Crequest is an in-
put message for the Merger, and thus it has its own state transition
generated in the model code.

The basic components generated for each @Action transition
method are also shown in Listing 2 for Crequest. The transition
starts by setting the state of the model to a name matching the
taken transition (this.state = "Crequest"). This allows the
MBT tool to use its model coverage algorithms to cover different
combinations of the interaction sequences. The second line in each
generated transition method always prints out the name of the state
transition taken (System.out.println("CREQUEST")) in order
to make it easier to follow the paths that the MBT tool takes while
it generates tests from the model. This is especially useful for
debugging errors that it discovers.

The next step is the generation of the expected interactions
within a transition. They are generated based on the FSM and the
categorization of each message in the component interface into an
input or output message. This classification is provided by the user,
through determining the names of the Java classes defining the in-
put and output message. These definitions (from the class files) are
automatically parsed to create a list of messages (method names)
that belong to either input- or output-interfaces. The FSM is then
analyzed with this information and each input-state (message) is as-
sociated with outgoing transitions to any output-states (messages).

For each input message in the FSM, a number of @Action tran-
sition methods are generated. One for the input message alone, and
one for each possible output message to which it has an outgoing
transition. For example, the combined FSM has a state Crequest,
which can either go to Creply or to AISin. As only Creply has
been classified as an output message, we obtain in the Listing 2 two
@Action methods: Crequest() corresponding to the input mes-
sage itself, and Crequest_Creply() corresponding to the input
message followed by a Creply output message.

In the @Action transition methods that include an expected
output transition from the input transition, also expectations for
this output transition are generated. This makes use of mock ob-
jects generated with EasyMock. An example is the Crequest_
Creply() method. The EasyMock mock object framework is used
to set up and verify the expected interactions with the SUT. All
mock objects are automatically generated in the JUnit test method,
which is used to execute this test through the JUnit testing frame-
work. It also allows integration of the model execution with most
modern IDEs, as they provide JUnit integration and means to report
and analyze the test results. The generation is shown in Listing 2
in the modelJUnitTest() method, which is always the name
of the generated JUnit test execution method. It starts with creat-
ing mock objects for the model, in this case mockClientRcv2.
These are stored globally in the model to allow for all the tran-
sition methods to access them. The generated mock object is
called mockClientRcv2 according to the related output interface
to which it belongs (ClientRcv2). In the Crequest_Creply()
method the expectations for the output method interaction
are set as expect(mockClientRcv2.Creply((AISMessage)

SERG Kanstrén, Piel, Gross – Trace-Based Code Generation for Model-Based Testing

TUD-SERG-2009-017 5



@Test public void modelJUnitTest() throws Exception {
mockClientRcv2 = createMock(ClientRcv2.class);
Tester tester = new RandomTester(this);
...

}
public void reset(boolean b) {

state = "";
System.out.println("- TEST "+testIndex+" -");
testIndex++;
Messages.clear();
Subscriptions.clear();
Clients.clear();
EasyMock.reset(mockClientRcv2);
try {
aISMerger = createAISMerger(mockClientRcv2);

} catch (Exception e) {
throw new RuntimeException(e);

}
}
...
@Action public void Crequest() throws Exception {

this.state = "Crequest";
System.out.println("CREQUEST");
replay(mockClientRcv2);
ReturnStatus rv4 = aISMerger.Crequest(Crequest_p0(),

Crequest_p1(),
Crequest_p2());

assertEquals("ok", rv4);
verify(mockClientRcv2);
EasyMock.reset(mockClientRcv2);

}
public boolean CrequestGuard() {

if(SubscriptionsIsNotEmpty()) return false;
if(MessagesAreDifferentFrom_ship2_()) return false;
if(ClientsSizeDoesNotEqual1()) return false;
if(MessagesSizeDoesNotEquals_0_1()) return false;
return true;

}
@Action public void Crequest_Creply() throws Exception {

this.state = "Crequest->Creply";
System.out.println("CREQUEST->CREPLY");
expect(mockClientRcv2.Creply((AISMessage)anyObject()))

.andReturn("ok");
replay(mockClientRcv2);
ReturnStatus rv5 = aISMerger.Crequest(Crequest_p0(),

Crequest_p1(),
Crequest_p2());

assertEquals("ok", rv5);
verify(mockClientRcv2);
EasyMock.reset(mockClientRcv2);

}
public boolean Crequest_CreplyGuard() {

if(ClientsIsNot_myclient()) return false;
if(SubscriptionsIsNotEmpty()) return false;
if(MessagesSizeDoesNotEqual1()) return false;
if(ClientsSizeDoesNotEqual1()) return false;
return true;

}
...
private String Crequest_p0() {

return (String) randomItemFrom(Clients);
}
private int Crequest_p1() {

return (int)1.0;
}
private byte Crequest_p2() {

return (byte)1.0;
}
...
private AISMessage AISin_p0() {

return null;
}
...
private String Cdisconnect_p0() {

return (String) randomItemFrom(Clients);
}

Listing 2. Generated reset method and sample transition (@Ac-
tion), guard and parameter value generation methods for Merger.

=====================================================
Crequest:::ENTER
shipID?1 == AISType?2
shipID?1 == size(Clients?g[])
size(Clients?g[])-1 == size(Subscriptions?g[])
clientName?0 == "myclient"
shipID?1 == 1
Clients?g[] == [myclient]
Clients?g[] elements == "myclient"
Subscriptions?g[] == []
Messages?g[] elements == "ship2"
Messages?g[] one of { [], [ship2] }
size(Clients?g[]) == 1
size(Messages?g[]) one of { 0, 1 }
clientName?0 in Clients?g[]
=====================================================
Crequest_EXIT:::ENTER
ReturnStatus?r == "ok"
=====================================================

Listing 3. Sample Daikon output for Crequest.

anyObject())).andReturn("ok");. This means that Easy-
Mock will expect the SUT (Merger) object to call the Creply()
method of mockClientRcv2 with any parameter of type
AISMessage, and when this happens the mock object should re-
turn the value "ok" to the SUT. Generation of the return values
will be discussed in more detail in the subsection 3.4.

Once the expectations are set, a call is made to the input method
of the SUT that corresponds to the state transition method being ex-
ecuted. In the case of Crequest_Creply() it is the Crequest()
method. To provide parameter values for these method invocations,
template methods are generated which the user will have to fill. The
types for the return value from the input method and for the input
method parameters are parsed from the input-interface class files.

Finally the results are verified, i.e., the test oracles
are invoked. For interactions, this is always of the form
verify(mockClientRcv2), with the name of the mock object
replaced with the correct name. This causes the EasyMock
framework to verify that all the expectations set for the mock
object are met, and no additional extra interactions are performed.
The return value oracles are discussed in the next subsection.

3.4 Transforming the invariants into model code for MBT
The second model used in the generation of the EFSM code is the
set of invariants provided by Daikon. These invariants describe the
properties of the parameters and return values of the input- and
output-interface method invocations for the SUT, as well as their
relations to the global states of the SUT. They are used to generate
possible return values for the mocked output message sequences,
parameter values for input messages, and guard conditions for
transitions. Daikon can output the invariant information in many
different formats for testing, and also in the form of Java assertions
that check whether the invariants hold [8]. However, none of these
formats is directly usable for our purpose. Therefore, we use the
basic textual output, parse it, and generate code out of it. An
example of this output for Crequest is shown in Listing 3.

Further, Listing 3 displays how we can identify which invariants
are related to global state, and which are related to return values or
parameter values. The postfix of the variable name represents the
identifier: ?g refers to a global state-related value, ?N, with N as
a positive integer, refers to a parameter value at the given index
for a method, and ?r refers to a return value. This formatting is
automated in our trace component when it produces the Daikon
input.

In addition, Listing 3 displays how we handle return values dif-
ferently from parameter values (postfix _EXIT of the method name

Kanstrén, Piel, Gross – Trace-Based Code Generation for Model-Based Testing SERG

6 TUD-SERG-2009-017



Crequest_EXIT). This is simply a naming convention used to al-
low separation of these values according to how we use Daikon.
Associating the invariant values to related parts of the FSM is based
on the method names in both the Daikon invariant output and in the
FSM. In case of Crequest in Listing 3, invariants related to global
state are used to generate the guard method for Crequest state, the
return value to create return value oracles and mock object return
values, and parameter invariants to generate the parameter values
as identified by the postfix in the variable name.

We do not generate non-primitive objects automatically, as it
is not possible to know how the primitive values in the invari-
ant model have to be mapped to previously unknown objects and
their constructors. Instead, where such objects are needed, the
value in the invariant model is provided to the user as a basis
for manual refinement. In Listing 2 this is shown as "ok" in
both transition methods Crequest() and Crequest_Creply(),
where rv4 holds the return value for Crequest(), and this
value is verified with assertEquals("ok", rv4). The same ap-
plies to the return value given to the SUT when it invokes the
mockClientRcv2 mock object in Crequest_Creply(), which is
shown as .andReturn("ok") in Listing 2. This "ok" must be
changed to create an actual domain object matching this invari-
ant value (shown in section 3.5 on model refinement). This illus-
trates the domain knowledge required of the user for creating non-
primitive objects. The values provided, when matching more com-
plex objects, have been defined by the person who created the in-
strumentation, and, thus, the representation of these objects in the
trace. The user should also know how to turn the provided data
into objects, e.g., in this case "ok". In addition to providing a sin-
gle value, the code generator supports provision of several value
options, and value ranges, based on the Daikon output. These are
generated into a matching test oracle assertion for the return value,
through comparison with a list of allowed values, or value ranges.

The second part of the generated model (based on the invari-
ants) concerns the guard conditions. For example, the guard of
the Crequest_Creply() transition method is the Crequest_
CreplyGuard() method. It comprises four constraints on the
Crequest_Creply() transition, each one being a call to a method
generated at the end of the model code (Listing 2).

Examples are shown in Listing 4.
SubscriptionsIsNotEmpty() matches the in-
variant Subscriptions?g[] == [] in Listing 3.
MessagesAreDifferentFrom_ship2_() matches the in-
variant Messages?g[] elements == "ship2" in Listing 3.
These names are generated in a way that they are human-readable,
e.g., if(SubscriptionsIsNotEmpty()) return false in
listing 2 means that “if the subscriptions list is not empty this
transition is not allowed”.

Since each constraint is modeled as a separate object in our
code generation tool, each constraint objects also contains a spe-
cially crafted template for the related invariant. This template de-
scribes how to use the provided parameter name and invariant val-
ues in a combination to create a human-readable expression. The
guard conditions are based on the global state only, as this is the
only state available during the evaluation of the guard constraints
(execution of the transition guard methods). In order to make
the generated code more user readable, additional helper methods
are generated in the model, e.g., randomItemFrom() method in
Crequest_p0() and Cdisconnect_p0() methods in Listing 2.
Making sure the generated code is human-readable permits to ease
the manual refinement process that will be described in the follow-
ing subsection. The easier it is to understand the code, the easier it
is to compare it to the specification, and to modify it as needed.

...
public boolean SubscriptionsIsNotEmpty() {
Collection requiredValues = new ArrayList();
if (Subscriptions.equals(requiredValues)) {

return false;
}
return true;

}
...
public boolean MessagesAreDifferentFrom_ship2_() {
Object expected = "ship2";
for (Object o : Messages) {

if (expected.equals(o)) {
return false;

}
}
return true;

}
...

Listing 4. Sample generated invariant checks for Listing 3.

The generation of guards out of the invariants has, however, one
major weakness: it often leads to overly constraining guards. The
previous examples illustrate well this drawback:

• The guards check specifically for myclient (Listing 3) and
ship2 (Listing 2) are derived from using those objects in the
focused unit tests that produced the trace, although they are
actually entirely irrelevant for the transition.

• The requirement for “no subscriptions” comes from the fact that
the request/reply functionality is executed with a set of focused
tests that never subscribe (since subscribing is not required for
this particular functionality). It is irrelevant whether there are
subscriptions or not.

Similarly, the (test) execution applied to produce the trace made
only one single connection to the client in order to exercise the re-
quest/reply functionality. Consequently, a guard was generated stat-
ing that there must always be exactly one single client connected
(ClientsSizeDoesNotEqual1, as this is the suggested setting
from the executions. However, according to the specification there
can be any number of clients connected, as long as there is at least
one.

These examples show that the invariants for guard conditions
can be overly constraining but, nevertheless, they still provide use-
ful information for the creation of the correct guard constraints. In
most cases, they grasp the correct variables influencing the tran-
sitions, and the correct type of test but they are too pessimistic.
Therefore the generated guards can be considered as a good start-
ing point for manual refinement.

The global state variables are identified in the trace itself by the
used identifiers as described earlier. However, we do not process the
trace but the invariant model that is the output of Daikon, and the
FSM model that is the output of ProM. The global state variables
for the EFSM are then based on the Daikon output as this includes
the required information to infer the names and types of global state
variables that should be in the generated model. When an invariant
related to a global state variable refers to a primitive value, a similar
variable is generated but with a suitable data type to match the
value in Daikon output. For example, if the value is numeric, an
integer variable is generated to describe it in the global state of the
generated EFSM model. In case the global state refers to an array
value, such as Subscriptions?g[] == [] in Listing 3, a Java
List object is generated for this invariant to represent state in the
model, using the name that it is being referred to in the trace. These
can be identified in the Daikon output by the [] notation it uses
both in its input and output. In the generated reset() method, all

SERG Kanstrén, Piel, Gross – Trace-Based Code Generation for Model-Based Testing

TUD-SERG-2009-017 7



state variables are cleared for the next test to be generated. The part
related to adding and removing objects from the generated List
objects is not updated automatically. This is up to the user to refine
the model to maintain the global model state while also creating
and destroying all non-primitive objects.

The final part of the generated code coming from invariants are
the parameter values for the calls to the input methods of the SUT.
These are illustrated in Listing 2 by Crequest_p0(), Crequest_
p1(), Crequest_p2(), and Cdisconnect_p0(). Their provided
values are similar to those provided for the return values, with
the exception that for return values, only the return values are
considered, whereas for parameters the parameter values are con-
sidered plus their relations to global state. Crequest_p1() and
Crequest_p2() show the creation of parameter values for the
Crequest() input method. Here, the invariant model has deter-
mined this to be a constant value, i.e., 1. For Crequest_p0()
and Cdisconnect_p0(), the invariants suggest that the value
should always be coming from the global list of state variables,
i.e., Clients. In this case, the generated model chooses one item
randomly from this list. This code has been generated fully auto-
matically based on the invariants.

The requirement to describe “correct” SUT behavior for provid-
ing a basis for test oracles was noted earlier. The parameter values
generated from the invariants are another reason for only consider-
ing nominal behavior during tracing of the SUT execution. As long
as there are no error producing inputs, the oracles can be gener-
ated with correct expectations, and the parameter value generation
is more powerful. If also erroneous input is included in the trace,
the invariant model would not be able to determine that a value
should be from the Clients list, or that it should be a constant of
1, for example. The trace would contain other values as well, as
this would be a property of the erroneous input, which would make
both the oracle generation, as discussed, and parameter generation
less powerful.

The generated code starts with the required model code for
ModelJUnit, the transition methods and their related guard meth-
ods. Then follow the template methods to be filled by the user: for
creating the SUT object, and for creating parameter values. Finally,
the guard condition checking methods are generated, which often
have to be refined by the user. Separating the parts that will likely
require manual effort helps the user concentrate on where his ex-
pertise is needed. This also ease the patching process used to keep
the model up to date when the SUT evolves.

3.5 Refining the Model
Once the model code has been generated, it has to be amended
manually and validated. In this case, the generated model code is
executed with the MBT tool and any errors found are fixed in either
the SUT or the model. In our experience, this step works best when
the states are enabled one at a time, because it helps the user focus
on any issues related to given state. In such iterative approach, it is
possible to keep the model complexity under control, and find the
causes of failures more easily.

Properties of the model that require manual refinement include
multiplicity of invocation sequences not visible in the FSM, cre-
ation of non-primitive objects, updates to global state and updating
the transition guard methods. These were already briefly discussed
in previous sections and in this section we illustrate these properties
using the code shown in Listing 2 as an example. Listing 5 shows a
refined version of this model code.

On default, the generated model for an input method expects
that a single message is received for each expected output. This is
a restriction of using an FSM as a basis for generating these expec-
tations. From a given state, the FSM only expresses the possible
transitions, but not how often they may be invoked. For example,

...
@Action public void Crequest_Creply() throws Exception {
this.state = "Crequest->Creply";
expect(mockClientRcv2.Creply((AISMessage)anyObject()))

.andReturn(ReturnStatus.ok).anyTimes();
replay(mockClientRcv2);
ReturnStatus rv5 = aISMerger.Crequest(Crequest_p0(),

Crequest_p1(),
Crequest_p2());

assertEquals(ReturnStatus.ok, rv5);
verify(mockClientRcv2);
EasyMock.reset(mockClientRcv2);

}

public boolean Crequest_CreplyGuard() {
if(Clients.size() < 1) return false;
if(Messages.size() < 1) return false;
return true;

}
...
long msgTime = 0;
int nextMsgId = 1;
private AISMessage AISin_p0() {
AISMessage message = new AISMessage((byte) 1, 0,

nextMsgId, new Date(msgTime));
nextMsgId++;
msgTime += 1000;
Messages.add(message);
return message;

}
...
private String Crequest_p0() {
return (String) randomItemFrom(Clients);

}

private int Crequest_p1() {
AISMessage msg = (AISMessage) randomItemFrom(Messages);
return msg.getUserID();

}

private byte Crequest_p2() {
return (byte)1.0;

}
...
private String Cdisconnect_p0() {

String client = (String) randomItemFrom(Clients);
Clients.remove(client);
Subscriptions.remove(client);
return client;

}
...

Listing 5. Refined versions of methods in listing 2.

the transition method Crequest_Creply() in Listing 2 may pro-
vide several replies when it has received several messages matching
the requested criteria. However, based on the FSM, only one reply
can be expected. Therefore, the model has to be refined manually
for all the reply messages to be delivered correctly. In Listing 5 this
has been amended through adding .anyTimes() to the end of the
EasyMock expectation for the Crequest_Creply() transition.

A second limitation due to the FSM is related to one input mes-
sage producing a varying number of output messages. Figure 6
shows an example FSM for this issue. There are two input mes-
sages, A and D, and two output messages, B and C. We know that
C can happen after B, and that B can happen after both A and
D. However, since the FSM has now abstracted the trace to this
level, we do not know if these interactions happen in this order
always, sometimes, or never. It may be that after A, both B and
C always follow. Similarly, it may be that after D, only B always
follows but C never does. Since it is not possible to make this dis-
tinction from the FSM, all the possibilities are generated. Thus the
generated model code will contain states A, A_B, A_B_C, D, D_B,
and D_B_C. However, in the minimal case, it should actually only

Kanstrén, Piel, Gross – Trace-Based Code Generation for Model-Based Testing SERG

8 TUD-SERG-2009-017



contain states A_B_C, and D_B. The other states have to be deleted
manually from the generated code. This will be highlighted by exe-
cuting the model and observing the specification, which will show
these states as “unreachable”. This helps in amending the model,
but requires additional effort.

A

D

B C

Input

Input Output Output

Figure 6. Example FSM.

The issues of creating non-primitive objects and updating global
state are closely related. These are illustrated in Listing 5 in the pa-
rameter value creation methods AISin_p0() and Cdisconnect_
p0(). The AISin_p0() is responsible for creating new AISMes-
sage (domain) objects that the Merger component processes. It
shows how the user must understand the domain concepts and know
how to create the domain objects for the SUT. In this case, each of
the messages needs a unique id value and a unique timestamp. As
they are created and passed to the SUT implementation, the model’s
internal global state must also be updated to match the implemen-
tation: the created object is added to the Messages global state
list. The Cdisconnect_p0() shows an example of when an object
needs to be removed from the model global state in order to match
the expected global state of the implementation. All these modifi-
cations must be carried out by the user. The global state lists are
automatically generated in the model, i.e., Messages, Clients,
and Subscriptions.

Examples of simpler refinements for non-primitive objects are
the changes from "ok" to ReturnStatus.ok (shown in Listing 2
and Listing 5). In this case, it is a straight mapping to an enumer-
ation with the name of the invariant value. An example of refining
the generation of a primitive value is shown in Listing 5, where the
Crequest_p1() method must return an id value which has been
received previously by the SUT. It must be refined manually to take
one of the messages from the global state list object Messages and
return the id values of this message. This typically happens in case
the value must depend on the global state. Since Daikon works with
a set of primitive values from a trace, it does not usually infer this
type of invariants related to composite objects, unless the trace is
especially crafted for this, which it is normally not.

The generated transition guard methods need to be completely
re-written for the final version of the model. As discussed ear-
lier, the generated versions are overly strict because they are
based on the invariants provided. For example, the guard method
Crequest_CreplyGuard() shown in Listing 2 has been com-
pletely modified in the refined version shown in Listing 5. The orig-
inal four generated ones have been changed to two specific ones.
Comparing the generated and the refined versions, it is easy to see
that the basic information is there in the generated copy, but it is
not useful as such. Thus it provides good basis for refinement but
is not usable without changes.

The refinements described in this section will be “requested” by
the MBT tool while it executes the model against the implemen-
tation: any problem with matching the two together gives an error
message. The user can then compare the error condition message
with the specification, and make a decision to refine the model with
the required fix, or to fix the implementation if it proves to contain
a bug. In any case, these errors in the model vs. the implementation
become apparent when the model is executed, and there is no need
to do heavyweight manual inspections of the model to find them.

4. Discussion
In this section we discuss the weak points of our approach and how
they could be addressed in future work. The discussion is mainly
focused on the weaknesses of the code generation based on separate
invariant and FSM models, as described in the earlier sections.

As raised in previous sections, the transition guard method gen-
eration based on the invariants provided by Daikon is not very ef-
fective. It is useful in providing insight into which variable affects
the transition and should be considered in the guard statements,
as well as their values. However, many excess conditions are gen-
erated, and even the ones hinting to the correct guard statements
are overly strict and need to be analyzed and refined. We believe it
would be more useful to focus on a few key invariants, make them
more specific, and tune them specifically for our purposes. For ex-
ample, when global state is represented in the form of a list, and the
size of the list is either 1 or 3 in the trace, one option would be to
make a more optimistic assumption and generate a guard statement
to require that this list always contains some items (size > 0).
However, identifying a good set of candidates and making them
more specific for this purpose, would require more extensive stud-
ies with various components, state representations and input data
sets.

Currently, global state updates have to be added manually to the
generated model. However, invariant detection could be extended
to automatically cover both pre- and post-conditions in the form of
providing invariants over the global state, both before and after a
message is processed by the SUT. For nor now, we focus on the
pre-conditions, which means that, for example, it is not possible to
infer an invariant stating whether a parameter value should become
a part of a global state list variable, after a state transition. Daikon
already provides some support for invariants based on pre- and
post-conditions, but as it is based on assumptions of having a
white-box trace of same values available both before and after each
method call, we did not find effective means to tailor it to our black-
box process.

Concerning the FSM code generation, a set of issues was de-
scribed in relation to multiplicity of state transitions and the ab-
straction provided by the FSM, as illustrated in Figure 6. The use
of a separate step for the FSM creation leads to the generation of too
many and too few assumptions with regards to how the interactions
are presented by the trace. If the current FSM related code gener-
ation was performed directly from the trace, or from an extended
FSM model including this information, without any tool overly ab-
stracting the required information in between, this issue could be
addressed without any manual effort.

With respect to the tools we used, it can be summarized that hav-
ing more specific and effective means of FSM and invariant genera-
tion would be useful. One option would be to extend the models and
tools to support the additional information needed. Another option
would be to replace those intermediary models by simpler mod-
els representing solely the information needed for the generation of
the code, and to build our own “FSM” and “invariant” inference en-
gines. However this second option would restrain the possibilities
for the user to observe the intermediary models. For example, the
usage of ProM permits the user to assess the completeness of the
trace, via many different types of models and visualizations. An-
other enhancement for the tools would be to integrate them more
closely with the tracing mechanism so that the models can be built
at runtime. This avoids the storage and batch processing issues for
the potentially huge traces that are generated for large input sets.

Although, in most cases, the root-causes for errors reported by
the MBT tool are clear, sometimes they are difficult to identify. The
cause of an error may be located in the model, or in the SUT. An
effective approach for finding these causes is to create a separate
test case with a specific testing tool, such as JUnit, based on the

SERG Kanstrén, Piel, Gross – Trace-Based Code Generation for Model-Based Testing

TUD-SERG-2009-017 9



generated test case. This separate test case will reveal all the hidden
assumptions in data generation, interactions and similar properties,
and allow the user to experiment with different settings. A separate
test case permits to do more focused analysis of the failure cause.
Currently, these tests have to be created manually. However, the
information required for their generation is already available in the
test case generated by the MBT tool. With this information, the
separate test scripts with related data values and other generated
input could be automatically generated, saving considerable effort
for these difficult debugging cases.

Finally, sometimes, it might be problematic to have an extensive
set of test executions available for the SUT. In these cases, an inter-
esting research approach would be to apply input generation mech-
anisms, such as search-based heuristics [13] for behavior explo-
ration. This would however, require means to sort out the “correct”
behavior from the “incorrect” in the generated traces, or at least
starting with the assumption that the trace will contain as much er-
roneous as correct behavior. In this case, the model becomes more
of a representation of all the possibilities with the SUT, and less a
representation of what is the expected behavior. This has effects on
the test oracle generation as described in Section 3. An extensive
study is needed to see how this could be made effective.

5. Conclusions and Future Work
This paper described a method and a collection of tools that help
test engineers derive and refine behavioral models in a semi-
automatic way to be used for model-based test generation. We
showed how execution traces can first be turned into FSM and in-
variant models to be used later as basis to generate model code
usable for MBT. An automated way to turn these models into an
EFSM in a MBT tool notation was presented, along with describ-
ing the algorithms needed. The presented technique for generating
the test model has some limitations. These limitations were dis-
cussed, and we have detailed how they could be addressed in future
work. However, even with these improvements it is still important
to remember that the generated model alone is not a description of
what should be expected from the SUT, but rather what it actually
provides. As the model for MBT must be a description of what is
expected of the SUT, it is especially important that the user verifies
the model vs. the specification of the system.

Future work will comprise an application of search heuristics,
i.e., evolutionary testing techniques, for the generation of test stim-
uli in order to obtain the traces, and improvement on the generation
of transition guards in order to make them more generic.

References
[1] Groovy - model-based testing with mod-

eljunit. http://groovy.codehaus.org/Model-
based+testing+using+ModelJUnit, 2009.

[2] A. Bertolino, A. Polini, P. Inverardi, and H. Muccini. Towards
anti-model-based testing. In Fast Abstract in The Int’l. Conf. on
Dependable Systems and Networks, DSN 2004, Florence, 2004.

[3] Antonia Bertolino, Guglielmo De Angelis, Francesca Lonetti, and
Antonino Sabetta. Let the puppets move! automated testbed
generation for service-oriented mobile applications. In Proc. of
the 34th Euromicro Conf. on Softw. Eng. and Advanced Applications
(SEAA2008), pages 321–328, Parma, Italy, 2008.

[4] Marat Boshernitsan, R. Doong, and A. Savoia. From daikon to
agitator: Lessons and challenges in building a commercial tool for
developer testing. In Proc. of the Int’l. Symposium on Software
Testing and Analysis (ISSTA2006), pages 169–179, Portland, Maine,
USA, 2006.

[5] Eric Bruneton, Thierry Coupaye, Matthieu Leclercq, Vivien Quéma,
and Jean-Bernard Stefani. The fractal component model and its

support in java. Software: Practice and Experience, 36(11-12):1257–
1284, 2006.

[6] Bas Cornelissen, Andy Zaidman, Arie van Deursen, Leon Moonen,
and R. Koschke. A systematic survey of program comprehension
through dynamic analysis. IEEE Transactions on Software Engineer-
ing, 2009.

[7] Sebastian Elbaum and Madeline Diep. Profiling deployed software:
Assessing strategies and testing opportunities. IEEE Transactions on
Softw. Eng., 31(4):312–327, April 2005.

[8] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant,
Carlos Pacheco, Matthew S. Tschantz, and Chen Xiao. The Daikon
system for dynamic detection of likely invariants. Science of
Computer Programming, 69(1–3):35–45, December 2007.

[9] Hans-Gerhard Gross. Component-Based Software Testing with UML.
Springer, Heidelberg, 2005.

[10] International Telecommunication Union. Recommendation ITU-R
M.1371-1, 2001.

[11] Davide Lorenzoli, Leonardo Mariani, and Mauro Pezzè. Automatic
generation of software behavioral models. In Proc. 30th Int’l. Conf.
on Softw. Eng. (ICSE’08), pages 501–510, Leipzig, Germany, May
2008.

[12] Tim Mackinnon, Steve Freeman, and Philip Craig. Endo-testing:
Unit testing with mock objects. In Proc. of eXtreme Programming
and Flexible Processes in Software Engineering (XP2000), Cagliari,
Sardinia, Italy, 2000.

[13] Phil McMinn. Search-based software test data generation: a survey.
Softw. Test., Verif. Reliab., 14(2):105–156, 2004.

[14] Ali Mesbah and Arie v. Deursen. Invariant-based automatic testing
of ajax user interfaces. In 31st Int’l. Conf. on Softw. Eng. (ICSE’09),
Vancouver, 2009.

[15] Carlos Pacheco and Michael D. Ernst. Eclat: Automatic generation
and classification of test inputs. In ECOOP 2005 — Object-Oriented
Programming, 19th European Conference, pages 504–527, Glasgow,
Scotland, July 2005.

[16] A. Pretschner, W. Prenninger, S. Wagner, C. Kühnel, M. Baumgartner,
B. Sostawa, R. Zölch, and T. Stauner. One evaluation of model-
based testing and its automation. In Proc. 27th int’l. conf. on Softw.
Eng.(ICSE’05), pages 392–401, 2005.

[17] David Saff, S. Artzi, J.H. Perkins, and M.D. Ernst. Automated test
factoring for java. In Proc. of the 20th Int’l. Conf. on Automated
Softw. Eng. (ASE2005), pages 114–123, 2005.

[18] N. Tillman and W. Schulte. Mock-object generation with behaviour.
In Proc. of the 21st Int’l. Conf. on Automated Softw. Eng. (ASE2006),
pages 365–368, Tokyo, Japan, 2006.

[19] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A
Tools Approach. Morgan Kaufmann, 1 edition, 2006.

[20] W. M. P. van der Aalst, V. Rubin, H. M. W. Verbeek, B. F. van
Dongen, E. Kindler, and C. W. Günther. Process mining: A two-step
approach to balance between underfitting and overfitting. Software
and Systems Modeling (SoSyM), 2009.

[21] W. M. P. van der Aalst, B. F. van Dongen, C. W. Günther, R. S. Mans,
A. K. Alves de Medeiros, A.Rozinat, V. Rubin, M.Song, H. M. W.
Verbeek, and A. J. M. M. Weijters. Prom 4.0: Comprehensive support
for real process analysis. In Application and Theory of Petri nets and
Other Models of Concurrency 2007, volume 4546, pages 484–494.
Springer, Berlin, Germany, 2007.

[22] Tao Xie and David Notkin. Tool-assisted unit test generation and
selection based on operational abstractions. Automated Software
Engineering Journal, 13(3):345–371, July 2006.

Kanstrén, Piel, Gross – Trace-Based Code Generation for Model-Based Testing SERG

10 TUD-SERG-2009-017





TUD-SERG-2009-017
ISSN 1872-5392 SERG


