
Delft University of Technology
Software Engineering Research Group

Technical Report Series

Reducing the Runtime Acceptance Costs
of Large-Scale Distributed

Component-Based Systems

Alberto González, Éric Piel and Hans-Gerhard Gross

Report TUD-SERG-2008-015

SERG



TUD-SERG-2008-015

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: Submitted for review at CBSE2008 at CompArch 2008 conference

c© copyright 2008, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Reducing the Runtime Acceptance Costs of
Large-Scale Distributed Component-Based

Systems ?

Alberto González, Éric Piel, and Hans-Gerhard Gross

Software Technology Department, Delft University of Technology
Mekelweg 4, 2628CD Delft, The Netherlands

{a.gonzalezsanchez,e.a.b.piel,h.g.gross}@tudelft.nl

Abstract. Software Systems of Systems (SoS) are large-scale distributed
component-based systems in which the individual components are elab-
orate and complex systems in their own right. Distinguishing charac-
teristics are their short expected integration and deployment time, and
the need to modify their architecture at runtime, while preserving the
integrity of the system.

Integration testing is a commonly used technique employed in the accep-
tance processes of software SoS. In this paper, we propose a scheme to
test a complete SoS at every reconfiguration, re-exercising the test cases
of every updated component. In practice, re-executing all the test cases,
whenever a modification takes place in one of the components, would
be very costly. This is the case, in particular, when the system has to
keep running all the time. Our proposal, therefore, encompasses several
methods to limit the amount of test cases to be executed. The basis of
all these methods is to rely on as much information as possible extracted
from previous runs of the test cases. We illustrate our findings with an
example SoS coming from the maritime safety and security domain.

1 Introduction

Maritime Safety and Security Systems of Systems (MSS SoS) represent a novel
kind of large-scale distributed component-based systems, in which the individ-
ual components are elaborate and complex systems in their own right. They
support authorities of states with their daily business of sensing issues at sea,
understanding them, and disseminating forces for checking the situation, and, if
required, intervening in critical situations. Typical tasks are collision detection
and avoidance, offshore platform protection, shipping lane surveillance, debal-
lasting dangerous items, harbour protection, pollution detection and prevention,
submarine detection, intrusion detection and prevention, assistance for vessels,

? This work has been carried out as part of the Poseidon project under the responsi-
bility of the Embedded Systems Institute (ESI). This project is partially supported
by the Dutch Ministry of Economic Affairs under the BSIK03021 program.

SERG González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems

TUD-SERG-2008-015 1



search and rescue, and prevention of illegal activities such as illegal immigration,
drug trafficking, piracy or terrorism [1].

In order to being able to support these tasks, MSS SoS are made of a range
of technical sub-systems, such as coastal radar systems, and radar systems on
patrol vessels, surveillance camera systems (on land, and at sea), surveillance
aircrafts, and long range identification and tracking systems in satellites, satellite
linking systems, meteorological stations, sonar systems, and AIS base systems
for vessel identification, tracking and management, to name only a few. All
these sub-systems, which are complex systems in their own right with their own
operational and managerial issues, have to be integrated into a single combined
operational entity, thereby forming a large System of Systems [2].

In this paper, we look at the acceptance processes that will be applied when
first deploying such Systems of Systems, as well as when they have to evolve
during runtime. The integration and acceptance processes deal with components
from various sources and varying degrees of knowledge about their function and
quality. In particular, we propose improvements to these methods that will take
advantage of a specially built-in infrastructure which will allow a higher degree
of integration and acceptance automation, and help reduce the costs of these
operations, through limiting the amount of integration testing to be carried out.

The paper is structured as follows. Section 2 explains what characteristics of
the development of large-scale Maritime Safety and Security SoS pose consider-
able software engineering challenges and describes the challenges we concentrate
upon. Section 3 presents relevant related work. In Sect. 4 we propose a process
in order to provide acceptance at the scale of the whole SoS. The usage of those
processes are presented on an example MSS system. Section 5 describes our
proposal for reducing the cost of the acceptance process whenever the system
evolves. Finally, Sect. 6 summarizes and concludes the paper.

2 Challenges in the Acceptance of Large-scale
Component-based Systems

The challenges presented by the integration of large-scale systems involve soft-
ware engineering best practices for developing large-scale distributed component-
based applications. These challenges entail methods, techniques, and tools for
testing, monitoring and diagnosis. They also require work-flow modeling and re-
alization for integration and acceptance processes, as well as automatic adapter
generation for sub-system integration.

2.1 Specific Challenges of Systems of Systems

The challenges engineers are facing when building MSS SoS are, to a large ex-
tent, concerned with devising appropriate integration and acceptance strategies,
given the large number of different components contributing to such a system.
MSS SoS must achieve information interoperability among a wide range of het-
erogeneous sources. This must be done while maintaining constant operational

González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems SERG

2 TUD-SERG-2008-015



readiness, monitoring the system healthiness, while assuring the independence
of its components. The dynamic nature of MSS SoS requires that components
may be integrated in a brief period of time, shortly before deployment, i.e., for
a maritime peace keeping mission, and thatHowever, it is possible to limit the
amount of test cases to be executed for the second phase, the runtime testing
phase, selecting only a part of the tests to be performed, by re-using the re-
sults obtained from the previous runs. The following subsections describe the
two phases in detail, plus some complementary methods that permit to reduce
the number of test cases to be executed. components may be removed, updated,
replaced, or added during deployment, without threatening the integrity and
quality of service of the overall system. In order to perform runtime integration
of collaborating systems, the involved acceptance processes have to be able to
deal with lack of total control over the operational and managerial aspects of
the participating components, characteristic of Systems of Systems.

2.2 System Acceptance and Component Acceptance

System Acceptance refers to the process of checking the criteria that the system
integrator and customer have agreed to be used to validate the system, and assess
the compliance of the system with the customers’ requirements. In a similar
fashion, we refer to Component Acceptance as the process of assuring that a
component included in an SoS environment will operate properly, according to
both, the component’s and the system’s specifications.

The system and component acceptance criteria are employed in live processes
that involve work before the system is deployed (development-time acceptance),
during first deployment (integration-time acceptance), and during runtime (run-
time and evolution acceptance). However, in this paper we concentrate on run-
time deployment and on architecture evolution. More specifically, we focus on
the usage of testing as the primary acceptance criterion. Central to this problem
is the question of how we can ascertain that every reconfiguration of the sys-
tem maintains the same level of certainty as during development time, assessed
according to predefined test adequacy criteria. Here, questions to be asked are
“what parts of the system should be re-checked”, “how can we minimize the
number of tests to be re-executed”, and “how do we make sure that the tests
that are left out would not have found any more errors”, whenever the system
is modified.

3 Related Work and Technologies Required

There is an active research community addressing the main topics of interest
related to integrating and accepting parts of component-based applications. The
following paragraphs provide a brief overview of related work relevant to the
subject of this paper.

SERG González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems

TUD-SERG-2008-015 3



The Component Trust Problem. When connecting a foreign component into a
component-based system, the problem of transferring the knowledge about the
component’s quality and expected behaviour from its developers to its potential
users is known as the component trust problem. Morris et al. propose a frame-
work for component certification through the developers [3], in contrast to having
external component certification bodies issue certificates. They claim that com-
ponents should provide standardized specifications plus test descriptions that
have been applied by the component developers in their development environ-
ment. This provides an indication of the kind of quality assurance performed for
system integrators. Gross et al. [4] take this idea of self-certification further, and
propose to use test suites from the producer of a component and execute them
in the new context of the system integrator (the component customer).

Built-in Integration Testing. Built-in testing (BIT) refers to techniques used for
equipping components with the ability to check their execution environment,
and their ability to be checked by their execution environment [5, 6], during
runtime. BIT is typically implemented in terms of additional software artifacts
permanently built into the components or their underlying runtime platform.
They enhance the testability of a component. Among these artifacts are built-in
testing interfaces, or built-in tester components that perform runtime tests of an
assembly of components. Tester components may be invoked before deployment
when a system is assembled, or during system updates, in order to verify the new
configuration. Built-in testing also includes techniques to monitor the behaviour
of components at runtime [7]. That way, components can perform much of the
required system validation effort automatically and by “themselves” [8].

Architecture Evolution in Component-Based Systems. Because of the inherent
dynamic nature of MSS Systems of Systems, they will be subject to frequent ar-
chitectural changes [9] as their components evolve, join and leave. The MSS SoS
architecture has to support safe run-time reconfigurations. Before and after each
reconfiguration, the consistency of the system has to be checked. Matevska-Meyer
and Hasselbring [10] propose a method that relies on a “consistency manager”,
which could be combined with the idea of “multi-versioning connectors” [11],
and a test request execution and isolation strategy based on BIT [12] to avoid
interfering with the business functionality of already existing components.

Regression Testing. The regression testing method will play an important role
as primary technique used to re-evaluate acceptance criteria for every (runtime)
modification of the MSS SoS architecture. Approaches that require access to
the source code cannot be applied in an MSS SoS context, since source code of
the components will hardly ever be available. Although model-based approaches
can be a solution [13, 14], the complexity of the models of the components to
be integrated, can often amount to intractable resulting combined models. A
solution that can be used when a model is not available, or the available model
is too complex, is to dynamically derive state models from usage traces [15]. As
an advantage, these models will be smaller, as they will be restricted to the way

González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems SERG

4 TUD-SERG-2008-015



the component has been used earlier in the SoS, thus, leaving out all the features
of the component not relevant in the current context. There exist also some
methods [16], that address this problem from a formal point of view, providing
a way to measure system updates and finding conflict-free configurations.

4 Integration Testing of Systems of Systems

As stated in Sect. 2, we will employ testing as our mean of providing acceptance
throughout the main stages in the life-cycle of an MSS. In this section we will
present our proposed acceptance process and the infrastructure that is required
in order to make it possible. Furthermore, we will apply this process to an
example MSS system taken from the vessel traffic management domain.

4.1 Hierarchical Organisation of the SoS

Typically, an SoS is organized as a hierarchical composite structure, in which
components are coordinated and associated into a composite, in which they
perform mutual tasks and share information and services. These composites take
part in bigger composites, and so on. As a concrete example of such a composite
structure, we use a vessel tracking system comprised of two sub-systems: ship’s
AIS identification (signals that all ships provide themselves) coming from the
coastguard [17], and radar information, coming from the port authorities. Fig. 1
displays the structure of this system. It is organized in terms of three hierarchical
components: the main MSS system on the top level, the port authority, and
the coastguard. On the MSS level, a Track Fusion component processes the
information provided by the radar and AIS services. From this information it
builds a shared picture of ship tracks which are displayed on the Alert Screen.
This shared picture can be used to coordinate the work of both organisations.

Fig. 1. Structure of our example MSS System.

SERG González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems

TUD-SERG-2008-015 5



By using this example, we will illustrate our proposed process to verify the
acceptance of the whole system with respect to integration testing as primary
acceptance criterion.

4.2 An Infrastructure for Integration Testing

In order to test the integration of an SoS, it is necessary, first, to be able to test
the integration of two components together. The basis of our process is that sets
of interacting components can check themselves for proper for integration. More
specific, in [18], a framework was devised, in which each component can have a
set of test cases associated with it, in order to check that the components on
which it relies behave as expected. This technique, we call it provider acceptance,
applies the principles of built-in testing (BIT), according to [5]. It introduces two
special interfaces (called controllers) to access the built-in testing features:

– The Acceptance controller through which test cases can be listed or ex-
ecuted for a particular required interface.

– The Testing controller through which the necessary functions are provided
for manipulating a component under test. This is required, especially, in the
context of runtime testing, where the component must be tested for a future
configuration, at the same time, as it must continue to operate in its current
configuration.

Our proposed process relies on a second, complimentary technique which we
call composition acceptance. It assigns to each composite component its own set
of built-in test cases, that perform the validation of the integration of the sub-
components contained in a composite component. This is required for checking
interactions that can only be seen from the composition point of view. For ex-
ample, if a signal is sent through another binding as a result of an operation.
These techniques will help to distribute the responsibility of the component ac-
ceptance to the parts that are concerned: to the client/server level and to the
composite/sub-component level. Figure 2 represents the system’s architecture
with the BIT controllers added. The TC interface corresponds to the testing
controller, while the AC interface corresponds to the acceptance controller. In
terms of implementation, the AC is, in fact, a normal component, as it con-
tains a test suite, and it can be bound to other components. That is why it is
represented as a small component in Fig. 2. We have also indicated a tester com-
ponent in Fig. 2, that is Radar Fusion Tester. However, typically there are more
than only one tester components. In this configuration, the tester component is
used to perform the provider acceptance of one instance of Radar through Radar
Fusion.

Based on these techniques, the system acceptance process can be devised. It
is sub-divided into two phases:

– An initial phase, which permits to assure that the original configuration is
acceptable.

González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems SERG

6 TUD-SERG-2008-015



Fig. 2. Structure of our example MSS System with built-in testing controllers and one
tester component represented.

– A reconfiguration phase, which validates every modification done to the run-
ning system.

The first phase cannot be optimized in terms of testing effort, because the whole
system has to be tested completely. This means that all (built-in) unit and
integration tests from the development phase of the system will be performed.

Although the method we propose for system evolution already limits the
parts of the system that are re-checked, it is possible to limit the amount of
test cases to be executed even further by re-using the results obtained from
the previous runs. The following subsections describe the two phases in detail,
leaving the complementary methods that permit to reduce the number of test
cases to be executed for Sect. 5.

4.3 First System Deployment

When deploying the system for the first time, we must ensure that the integrated
components accept the context they are being deployed in, and that the system
as a whole is acceptable. We perform integration-time system and component
acceptance by using built-in tests in the components. As mentioned earlier, this
is performed

– by executing test cases contained in one component on all the other compo-
nents to which it is associated, and on which it relies (down and across the
compositional graph), and

– by executing test cases on all composite components (up the compositional
graph).

This way, every component of the SoS is able to check its direct environment
according to its own acceptance criteria. In the case of composite components,

SERG González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems

TUD-SERG-2008-015 7



their built-in tests will check the part of the system acceptance that concerns
the composition of the components they contain.

It should be noted, that this phase usually happens at first deployment, when
all the components can be executed but the system is not yet operating. However
this is not a requirement. In particular, some other parts (sub-components) of
the SoS could, in fact, already be running while the SoS as a whole is deployed for
the first time. The framework supporting the testing has to handle this kind of
integration testing at runtime. For instance, in our MSS example, the Coastguard
component and the Port component are already running and cannot be stopped
when the complete MSS system is integrated and deployed for the first time. In
this case, the initial testing phase will take place while these two sub-components
are already operating normally.

In this phase of acceptance, the acceptance process executes every single
test case available. The order of tester components executed is not relevant. In
particular, it must be possible to run concurrent tests on several components,
as long as there is no dependency between the tested components (neither on
the client/server level nor on the composite/sub-component level). However, for
diagnosing the errors found, with as much detail as possible, our proposed ac-
ceptance process is carried out in a constructive, bottom-up way, guided by the
dependencies between the components. In other words, the acceptance process
starts by testing the components which have no requires dependencies and which
are leaves in the compositional tree. Next, those components are tested, whose
dependencies have been tested already, and so on. Complete composite com-
ponents are tested only when all their sub-components have already performed
their acceptance tests. This process is repeated, until the root is tested, and
the entire MSS system can be accepted. It is important to note, that this or-
der cannot always be respected: there might be cyclic dependencies between the
components. In this case, one of the components will have to be selected first for
testing. Here, a problem is that it is not possible to determine exactly in which
component the acceptance failed.

For example, the deployment-time acceptance process of our MSS system
performs first the provider acceptance of the three AIS components, the AIS
Relay, and then the Control components of Coastguard. Then, the composition
acceptance of Coastguard will be performed. The process for Port is done in
the same way, and simultaneously. Finally, the provider acceptance of Coast-
guard, Port, Track Fusion, Alert Screen and MSS Control (in that order) will
be performed, followed by the composition acceptance of the whole MSS System
component.

If the component acceptance fails, the system architect will have to amend
the part where the error has been detected, or take the decision to force the inte-
gration of the component, with a warning, or in a degraded mode. This depends
on the trade-off between the thoroughness of the acceptance criteria applied,
and the requirements for a prompt deployment. If the surrounding components
do not depend on the degraded functionality, this may not even affect their or
the system’s acceptance.

González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems SERG

8 TUD-SERG-2008-015



4.4 System Runtime Evolution

MSS Systems of Systems are dynamic in nature. Components will leave the
system and others will join. Therefore, we must ensure that after each runtime
modification [9], the acceptance criteria for the whole system are still satisfied.

Modifications range from simple alterations, such as changing bindings with-
out adding or removing any component, to more complex ones where multiple
components are added and removed, and numerous bindings are affected at the
same time. Modifications on the acceptance contracts themselves must also be
taken into account. We impose the restriction that reconfigurations are treated
in an atomic way, that is, they have to be accepted/rejected as a whole, not only
the components whose acceptances have passed/failed.

Reconfigurations occur at runtime. Furthermore, the typical systems under
consideration cannot be stopped as a whole, not even for a short period of time.
Therefore it is a requirement that all the test cases can be executed while the
current configuration stays operational. The exact way how this is achieved, is
out of the scope of this article, but we can mention that either this will be handled
by the testing framework (by using sandboxing for instance), or explicitly by the
component under test (by using the testing controller to determine their testing
capabilities) [12].

System evolution involves three steps:

1. Perform the acceptance of the new components, if any;
2. Determine which of the other participating components are affected;
3. Re-evaluate the acceptance of the affected components.

The re-evaluation of acceptance criteria in the affected components is performed
bottom-up, in the same way as it was done during first deployment.

In order to determine the components affected by a reconfiguration, it is nec-
essary to look at the components’ requires dependencies. These are the bindings
between all other associated client and server connections in the architecture of
the SoS. Every component is considered as being affected by runtime evolution,
that

– has one of its bindings modified,
– has a dependency with a modified component,
– has a dependency with an affected component,
– contains an affected or a modified component.

Please note, that this is recursive.
For each of the affected components the acceptance procedures are then exe-

cuted. The execution order of the tests is the same as the dependencies browsing:
starting from the modified component, going through each dependant compo-
nent, until the topmost level is reached. Figure 3 shows this process for one
modification of our example MSS SoS. The system architect requests the modi-
fication of the AIS component indicated by a star (e.g., a version upgrade). The
dotted curve shows the detection of the affected components. Black circles are
drawn on components for which provider acceptance will be performed, while

SERG González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems

TUD-SERG-2008-015 9



black squares are drawn on components for which composition acceptance will
be performed.

Fig. 3. Acceptance re-checking steps triggered by the replacement of an AIS compo-
nent.

5 Reducing the Cost of Acceptance

As an implication of the testing sequence introduced in the previous subsection,
whenever a modification occurs in Fig. 3, it is necessary to re-run a significant
part of the acceptance process. This is not acceptable for runtime component
updates, especially in the context of large-scale systems.

5.1 Reducing the Number of Components to Test

Reducing the cost of the acceptance process at system modification can be
achieved through limiting the number of affected components to re-test. Con-
straining the scope of redoing the acceptance process relies on two fundamental
observations on the properties of MSS SoS:

1. The fact, that MSS are comprised of loosely coupled components. This con-
strains their inter-dependencies considerably.

2. The knowledge, that in the current configuration of the system, every com-
ponent has passed its tests.

The hierarchical, composite structure of the system will act as a containment
barrier for repeating unnecessary acceptance processes to be performed during
runtime, thus, reducing the scope and amount of acceptance checks that have to
be done after dynamic system updates.

When devising the list of components affected by a dynamic update, for ev-
ery composite component it must be determined if executing test cases from the
upper components will permit the detection of faults that cannot be detected by

González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems SERG

10 TUD-SERG-2008-015



the test cases provided by the lower-level components. How this can be done au-
tomatically is still an open research question. Nevertheless, it is possible to refer
to one obvious and meaningful condition: if the test cases for the composition
acceptance have 100% specification coverage of the component under consid-
eration, and they have all passed, then, any more testing on a higher level of
the compositional hierarchy will be redundant. In a general automated scenario,
the function to determine whether higher-level testing may be redundant, would
have to consider four parameters:

– the model of the modification of the system,
– the specification coverage criterion,
– the test cases already performed on the lower level, and
– the test cases of the higher levels.

This function would return true or false, depending on whether or not repeating
the acceptance process can be stopped on a given hierarchical level, or not. This
function could be used to indicate also whether new test cases are needed in
the current level to avoid upwards propagation of the acceptance process. Fig. 4
shows the acceptance process on the MSS SoS example with this method in
use. As in Fig. 3, one AIS component marked by a star is modified, and the
first affected component, in this case AIS Relay, is, therefore, identical. However
reaching the Coastguard component, the function determines that the test cases
from the higher components can be omitted, thus, constraining the number of
components to be tested to the Coastguard subsystem.

Fig. 4. Reduction of the number of components to re-test by pruning the highest levels
of hierarchy from the integration acceptance process.

5.2 Reducing the Number of Test Cases

The cost of acceptance when the system evolves can also be reduced by minimiz-
ing the number of test cases to be executed per built-in tester component. The
basis of this approach is to apply regression testing (as introduced in Sect. 3),

SERG González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems

TUD-SERG-2008-015 11



although, on the component level. Typically in an SoS, every elementary com-
ponent is a black-box, the source code is not available. The finest level of detail,
which can be managed by the runtime framework is, therefore, the elementary
component. Typical code-based test criteria may not be applied in our case.
Test case selection techniques for regression testing are readily available in the
literature, e.g. [19].

During the initial phase of acceptance (and previous evolutions of the sys-
tem), traces for each test case are recorded. A trace permits to associate a given
test case with the components and bindings exercised during execution. When
performing the integration acceptance of the new system’s configuration, only
the test cases which exercise the modified components have to be run again.
This applies to both, provider and composition acceptance test cases.

Figure 5 illustrates this method. The provider acceptance is performed for
Track Fusion on AIS Provider. The diagram on the left-hand side shows the
traces of three example test cases associated with Track Fusion. They were ob-
tained by the component runtime framework on first deployment of the system.
One of the test cases exercises AIS Relay and AIS only, another one exercises
all the three sub-components, and the third test case involves only AIS Relay
and Filter. The diagram on the right-hand side depicts the test case reduction
when Filter is modified. Only the second and third test cases are required to be
rerun.

Fig. 5. Reduction of the test cases to run by pruning those not involved in testing the
modified components.

6 Summary, Conclusions and Future Work

Every modification of a part of an MSS SoS may cause high runtime costs for
repeating the acceptance processes. If the system has to stay operational at all
times, or if the reconfiguration has to be done quickly, this cost, has to be min-
imized while maintaining the same kind of acceptance assurance on the newly
integrated systems as has been achieved at first deployment. The integration ac-
ceptance process we proposed in this article relies on built-in provider acceptance
and composition acceptance in order to achieve this goal.

The first contribution of this paper is the distribution of the integration ac-
ceptance procedures of the entire SoS over its sub-components, and re-evaluation
when the architecture changes. By using BIT technology, it is possible to keep

González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems SERG

12 TUD-SERG-2008-015



the test cases synchronized with the current components constituting the sys-
tem. Moreover, from the chain of related components affected by a modification,
it is directly possible to constrain the set of test cases to be re-executed, to the
test cases contained in this particular chain.

Another contribution of the paper is the proposition to limit the propagation
of the acceptance process upwards in the composite hierarchy without compro-
mising the assurance on the correctness of the system. By determining whether
the test cases from the higher-level components are able to detect faults that
could not have been detected by the lower-level tester components, decision can
be made to propagate further up, or to stop the acceptance process. In case that
the system architect want the propagation to stop on a certain level of hierar-
chy, while the test cases do not provide enough coverage compared to the higher
level, additional test cases may have to be devised. In such a case, either the
system architect is requested to provide more test cases, or the framework can
automatically generate test cases out of the model of system.

Reduction of the integration acceptance cost can also be achieved by reducing
the number of test cases to run. By observing the execution of every test cases at
deployment time, it is possible to have precise knowledge of which component is
exercised during which test case. When a modification happens on the system,
only the test cases involving precisely the modified components have to be re-
executed.

A challenging question for future work is: “How can we determine auto-
matically, whether higher-level test cases can detect defects that have not been
detected by the test cases run so far?” When the test cases already reach full
coverage, it is easily possible to omit the other higher-level tests. In practice,
full coverage is difficult to achieve. The higher level components use only a part
of the functionalities provided by the component under test, so, logically, their
test cases only cover this limited part. If this part of the functionalities has been
100% covered by the previous test cases, the acceptance process can stop. There-
fore, one way to answer the question is to get into the position to compare the
parts covered by two sets of test cases and determine if one is included in the
other.

As future work, we are also planning to implement and automate these pro-
posed processes on the Fractal [20] component platform, so that it can be in-
tegrated with the reconfiguration tools we have so far. In particular it will be
interesting to evaluate to which extent acceptance process can be distributed
over the available components. In the context of MSS SoS, the fact that each
component requests by itself the test cases to be run would avoid having to
share the information of the component’s architecture with the rest of the sys-
tem (a security requirement). That way, we could define the acceptance criteria
to be independent from the various sub-systems (needed to keep freedom on the
management of each sub-system).

Moreover, a study of the applicability of these techniques to a publish-
subscribe data distribution service is also planned. This kind of runtime system
presents its own challenges with respect to integration testing. In particular the

SERG González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems

TUD-SERG-2008-015 13



dependencies between each component are not explicit, each component receiv-
ing or sending a particular type of data. In addition, the communication between
the components are always asynchronous, which leads to difficulties in defining
the test cases.

References

1. Thales Group: Maritime safety and security. http://shield.thalesgroup.com/
offering/port maritime.php (2007)

2. Maier, M.W.: Architecting principles for systems-of-systems. Systems Engineering
1(4) (1998) 267–284

3. Morris, J., Lee, G., Parker, K., Bundell, G.A., Lam, C.P.: Software component
certification. Computer 34(9) (2001) 30–36

4. Gross, H.G., Melideo, M., Sillitti, A.: Self-certification and trust in component
procurement. Science of Computer Programming 56(1–2) (April 2005) 141–156

5. Gross, H.G., Mayer, N.: Built-in contract testing in component integration testing.
Electronic Notes in Theoretical Computer Science 82(6) (2004) 22–32

6. Gross, H.G.: Component-Based Software Testing with UML. Springer, Heidelberg
(2005)

7. Deveaux, D., Collet, P.: Specification of a contract based built-in test framework
for fractal (2006)

8. Brenner, D., Atkinson, C., Malaka, R., Merdes, M., Paech, B., Suliman, D.: Re-
ducing verification effort in component-based software engineering through built-in
testing. Information System Frontiers 9(2–3) (2007) 151–162

9. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software evo-
lution. In: ICSE ’98: Proceedings of the 20th international conference on Software
engineering, Washington, DC, USA, IEEE Computer Society (1998) 177–186

10. Matevska-Meyer, J., Hasselbring, W.: Enabling reconfiguration of component-
based systems at runtime. In van Gurp, J., Bosch, J., eds.: Proceedings of Workshop
on Software Variability Management, University of Groningen (February 2003)
123–125

11. Rakic, M., Medvidovic, N.: Increasing the confidence in off-the-shelf components:
a software connector-based approach. In: SSR ’01: Proceedings of the 2001 sym-
posium on Software reusability, New York, NY, USA, ACM (2001) 11–18

12. Suliman, D., Paech, B., Borner, L., Atkinson, C., Brenner, D., Merdes, M., Malaka,
R.: The morabit approach to runtime component testing. In: 30th Annual Inter-
national Computer Software and Applications Conference, 2006. COMPSAC ’06.
Volume 2. (Sept. 2006) 171–176

13. Orso, A., Do, H., Rothermel, G., Harrold, M.J., Rosenblum, D.S.: Using com-
ponent metadata to regression test component-based software. Software Testing,
Verification and Reliability 17(2) (2007) 61–94

14. Muccini, H., Dias, M., Richardson, D.J.: Reasoning about software architecture-
based regression testing through a case study. In: COMPSAC ’05: Proceedings
of the 29th Annual International Computer Software and Applications Conference
(COMPSAC’05) Volume 2, Washington, DC, USA, IEEE Computer Society (2005)
189–195

15. Mariani, L., Papagiannakis, S., Pezze, M.: Compatibility and regression testing of
cots-component-based software. In: ICSE ’07: Proceedings of the 29th International
Conference on Software Engineering, Washington, DC, USA, IEEE Computer So-
ciety (2007) 85–95

González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems SERG

14 TUD-SERG-2008-015



16. Stuckenholz, A., Zwintzscher, O.: Compatible component upgrades through smart
component swapping. In Reussner, R.H., Stafford, J.A., Szyperski, C.A., eds.: Ar-
chitecting Systems with Trustworthy Components. Volume 3938 of Lecture Notes
in Computer Science., Springer (2004) 216–226

17. International Telecommunication Union: Recommendation ITU-R M.1371-1. tech-
nical characteristics for a universal shipborne automatic shipborne automatic iden-
tification system using time division multiple access in the VHF maritime mobile
band (2001)

18. Gonzalez, A., Piel, E., Gross, H.G.: Runtime integration and acceptance of dis-
tributed maritime safety and security systems. Technical Report TUD-SERG-2008-
007, Delft University of Technolgy, Software Engineering Research Group (2008)

19. Graves, T.L., Harrold, M.J., Kim, J.M., Porter, A., Rothermel, G.: An empiri-
cal study of regression test selection techniques. ACM Transactions on Software
Engineering and Methodology (TOSEM) 10(2) (April 2001) 184–208

20. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: An open com-
ponent model and its support in java. In Crnkovic, I., Stafford, J.A., Schmidt,
H.W., Wallnau, K.C., eds.: CBSE. Volume 3054 of Lecture Notes in Computer
Science., Springer (2004) 7–22

SERG González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems

TUD-SERG-2008-015 15



González, Piel, Gross – Reducing the Runtime Acceptance Costs of Large-Scale Distributed Component-Based Systems SERG

16 TUD-SERG-2008-015





TUD-SERG-2008-015
ISSN 1872-5392 SERG


