Andreas Wierda, Eric Dortmans, Lou Somers

Architecture Reconstruction of Industrial Object-Oriented Software: A Case Study
Contents

- Context
- Approach
- Case study: Architectural clustering
- Conclusions
Context

Architecture Reconstruction
- Reconstruct architectural view from source code
- Which methods?
- Useful for printer controllers?
- Result quality?
- Improvements?

Context: Océ printer controller
- Océ: printer & copier manufacturer
- Océ multifunctionals: printer, scanner & copier
- Object-oriented (mostly C++)
- 932 KLOC in 2661 classes
Approach

- Architecture Reconstruction methods
 - Manual methods: supported with tools
 - Automatic methods (for object-oriented software):
 - Pattern detection with a pattern library
 - Pattern detection without a pattern library
 - Architectural clustering: different kinds of information used

- Case study
 - Architectural clustering
Clustering: Introduction

- Group closely related elements
- Small example:
Case Study: Architectural Clustering

- Group closely related classes
 - Based on relations between them.

- Literature study led to two hypotheses:
 - Clustering can reconstruct “good” architectural views.
 - Using information from old versions gives a better result.

- Prototype to confirm hypotheses
Clustering: Architecture overview

- Source code
- Fact extraction
- Class graph
- Decomposition
- Visualisation
- Architectural view
- Assessment
- Similarity metric
- Expert decomposition
- Source-tree based clustering
- Decomposition editing
- Expert knowledge
- Class information
- Expert knowledge

- Class graph
- Decomposition
Clustering: Architecture Reconstruction

- Source code \emptyset class graph
- Class graph \emptyset cluster graph
 - Classes \emptyset nodes
 - Class-relations \emptyset edges
 - Edge “thickness”
 - Type weight
 - Redundant edges for dependencies
Case Study: Parameters

- Weight of relations:
 - Association (p_{wa}): Integer
 - Generalisation (p_{wg}): Integer
 - Dependency (p_{wd}): Integer

- Reduction of information:
 - Take instance count or just presence of relations (p_c): Boolean
 - Omit redundant dependencies (p_i): Boolean
Clustering: Using version information (1)

Versions: V_8 V_1 ... V_8

Models: M_8 M_1 $M_{1,8}$

Architecture: A_8 A_8
Clustering: Using version information (2)

Reconstructed version

Other version

Class-relations-intersection
Clustering: Experiment Approach

- Find parameters
 - For weights and combine/ignore behaviour
 - Try different combinations Ø small program
 - Experiment with ten architects
 - Used Grizzly & RIP Worker subsystems

- Result
 - Different best combinations for Grizzly and RIP Worker
 - Use set of parameter-combinations
Clustering: Results

- Applied twice to printer controller (version 7e and 8a)
- Resulting MoJoQuality
 - Version 7e: 61%
 - Version 8a: 63%
- Multiple versions:
 - Class-relations-intersection
 - With first version: better MoJoQuality (74% and 78%)
 - With previous version: no improvement
 - Class-relations-union: no improvement
Clustering: Conclusions

- Clustering can reconstruct useful architectural views...
 - ...but manual refinement of result needed
- Time consuming but practical
- Information from old versions helps to get better results

Hypotheses:
- ✓ Clustering can reconstruct “good” architectural views.
- ✓ Using information from old versions gives a better result.