An Experimental Validation of MetricView Visualizations

Christian Lange

www.win.tue.nl/~clange
c.f.j.lange@tue.nl

EmpAnADa Project
Empirical Analysis of Architecture and Design Quality

TU/e
Outline

- About *MetricView Evolution*
- Purpose of the Experiment
- Design of the Experiment
- Results
- Conclusions & Future Work
- Discussion
About MetricView Evolution

- UML models are becoming central artefacts
- Larger variety of activities performed on models
- Can UML and existing tools deals with these activities…?
 - Traceability
 - Which use cases require class X?
 - In which Sequence Diagrams is class X instantiated?
 - Metrics
 - Why has class X a coupling metric of 33?
 - External Data
 - Which class contains the most bugs?
 - Evolution
 - How did the quality of class X evolve over the past versions?
 - …
Example Views

- Demo
 - MetricView Evolution
Purpose of the Experiment

- **Purpose**
 - Validation of MetricView visualizations for comprehension of UML models

- **Research Questions**
 - RQ 1: Is the **correctness** improved by using MV?
 - RQ 2: Is the **effort** reduced by using MV?

- **Focus on**
 - Structural Visualizations (Navigation)
 - Metrics Visualization (Quality Assessment)
Experimental Task

- **Task:** Subjects had to answer a questionnaire about a UML model using a tool.
Questionnaire

Task: Subjects had to answer a questionnaire about a UML model using a tool

- Comprehension Task
- Multiple-choice
- 29 questions
- 4 categories of questions
 - Structure within class diagram(s)
 - Interactions (SD – CD relations)
 - Functionality (UC – CD – SD relations)
 - Metrics
Questionnaire II (Examples)

- **Category 1 (Class Structure)**
 - To which classes is the class *Obstruction_DB* coupled by associations?

- **Category 2 (Interaction)**
 - Which classes call methods of class *CurrentLocation*?

- **Category 3 (Functionality)**
 - Which classes contribute to the use case “*Leave Route*”?

- **Category 4 (Metrics)**
 - In which class diagram does the class with the largest “*Number of Attributes*” occur?
Task: Subjects had to answer a questionnaire about a UML model using a tool.

- 2 different models
- Application Domain
 - Insurance Information System
 - Car Navigation System
- 39 classes
 - 5 class diagrams
 - 5 sequence diagrams
 - 11 use cases
Experimental Treatment

- **Task:** Subjects had to answer a questionnaire about a UML model using a tool.

- **Treatment:**
 - MetricView Evolution

- **Control Group**
 - Poseidon UML & SDMetrics
Subjects

Task: Subjects had to answer a questionnaire about a UML model using a tool

- 100 subjects
- MSc students in the course `Software Architecting`
- Sufficient background in UML
Operation

- **Preparation**
 - Lectures
 - 2 assignments
 - Pilot run

- **Details**
 - Randomization
 - Exam-like setting
 - Debriefing questionnaire after each run

- **Design**

 First Run
 - Insurance Model
 - Group A
 - Group B

 Second Run
 - Car Navigation Model
 - Group B
 - Group A

 MetricsView Evolution
 - Poseidon & SDMetrics
Results: Correctness

Variable:

\[
\frac{\text{# Correct answers}}{\text{# Questions}}
\]

Test:
- Mann-Whitney &
- Student t

<table>
<thead>
<tr>
<th></th>
<th>First Run</th>
<th>Second Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVE</td>
<td>.837</td>
<td>.921</td>
</tr>
<tr>
<td>PoS</td>
<td>.771</td>
<td>.881</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>MVE</th>
<th>PoS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>.837</td>
<td>.771</td>
</tr>
<tr>
<td>Difference</td>
<td>+ 8.5 %</td>
<td>+4.5 %</td>
</tr>
<tr>
<td>P-value</td>
<td><0.001</td>
<td>0.002</td>
</tr>
</tbody>
</table>
Results: Effort

- **Variable:**
 - Time (minutes)

- **Test:**
 - Mann-Whitney &
 - Student t

<table>
<thead>
<tr>
<th></th>
<th>First Run</th>
<th>Second Run</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVE</td>
<td>54.6</td>
<td>52.5</td>
</tr>
<tr>
<td>PoS</td>
<td>67.6</td>
<td>66.0</td>
</tr>
</tbody>
</table>

| Difference | -19.2 % | -20.6 % |

| P-value | <0.001 | <0.001 |
Debriefing Questionnaire

- No differences between groups
 - Skill & knowledge
 - Motivation

- No differences between models/runs
 - Quality, understandability, completeness

- Differences between runs for Correctness
 - Learning effects
 - Tool
 - Task
Conclusions & Future Work

- MetricView visualizations improve Model Comprehension
 - Effort (20%)
 - Correctness (4% - 8%)

- Subjective Evaluation Results → low Adoption Threshold

- Future work
 - Investigate Learning Effects
 - Variations in Comprehension Task + Change Task
 - Further Improvement of Visualizations
An Experimental Validation of *MetricView* Visualizations

www.win.tue.nl/empanada

EmpAnADa Project
Empirical Analysis of Architecture and Design Quality

TU/e technische universiteit eindhoven