Towards Disk-Level Malware Detection

Nathanael Paul
Sudhanva Gurumurthi
David Evans

University of Virginia

Cobassa Workshop, Nov. 7, 2005
Current Malware Detection

• String matching
 – Match bytes in .exe to virus signature
 (40% of CPU time in ClamAV [Silberstein ‘04])

• Emulation
 – Must emulate decrypt or decompress
 viruses to match against virus signature

• AV software 129% overhead on single
 processor [Uluski et al. ‘04]
Proposed AV Solutions

• Software
 – Symantec, McAfee, F-Secure, ...

• Hardware Coprocessor
 – Tarari

• Use **Disk Drive Processor**
 – Seagate Momentus, EMC checksums Oracle DB blocks
 – Let disk do some AV work
Disk-Drive Characteristics

- Data Parallelism (SIMD-type) system
- Can actively process data instead of simple data transfers
- Sees I/O traffic at lower-level
Disk-Drive Malware Detector

• ~60% of CPU time in ClamAV is disk I/O
• Extra processing capability with each drive (cheap and scales)
• Think PDA with 8-16 MB RAM
Workload Partitioning between host CPU and disk CPU

• Disk processors are about 2-3 generations behind current desktop CPUs
 – WinNT 4.0 (Pentium with 16 MB RAM)
• Disk CPU is underutilized
• Secure communication and updates problematic
Dynamic Analysis of Disk I/O

• Funlove virus
 – Only detected once disk had been infected

• Opportunity to protect data just before persistent state updated
 – Protection of critical OS data
 – Scanning should have low overhead
Dynamic Analysis Challenges

• Semantic information loss
 – Only will see reads and writes of disk blocks
 – Could bootstrap semantic information at OS installation

• Updates/communication a problem
 – May make use of Trusted Platform Module (TPM)
Rootkit Detection

- Normally comparison between high-level and low-level information
 - Registry, Master File Table, Kernel Process Information
- Scan without detection from rootkits
Example Scan

C:\\research\\harddrive\\presentations\\cobassa>dir /s /b
C:\\research\\harddrive\\presentations\\cobassa\\clam.png
C:\\research\\harddrive\\presentations\\cobassa\\disk-level-malware-detection-commented.ppt
C:\\research\\harddrive\\presentations\\cobassa\\disk-level-malware-detection.ppt
C:\\research\\harddrive\\presentations\\cobassa\\disk-level-malware-v2.ppt
C:\\research\\harddrive\\presentations\\cobassa\\NTFS-MFT-structure.gif
C:\\research\\harddrive\\presentations\\cobassa>
Rootkit Challenges

• Communication a must
 – Disk or host must perform comparison

• Updating is again a problem
 – Without TPM, we “up the bar” of compromise
DADDIO: **Dynamically Analyze Disk Drive I/O**

- **Goal:** Prevent corruption of OS while continuing safe execution
 - Recovery and disinfection

- **DADDIO** only has to process `writes` to disk
 - Software running on disk processor
 - Could ship on disk drive
DADDIO Challenges

• Recognizing malicious activity from low-level disk blocks

• 8-16MB of RAM
 – Performance may suffer if too much RAM used

• Will throttle execution if system under heavy load
Conclusion

- Opportunities exist for partitioning AV workload with disk CPU
- Will first look at what information can be learned without communication with host AV engine
- Recovery tactics
Questions?

nate@cs.virginia.edu
http://www.cs.virginia.edu/daddio